Биодоступность пероральных препаратов

2.4.1. Всасывание лекарств

  • Листать назад Оглавление Листать вперед

    Введенное лекарство переходит из места введения (например, желудочно-кишечный тракт, мышца) в кровь, которая разносит его по организму и доставляет в различные ткани органов и систем. Этот процесс обозначают термином всасывание (абсорбция). Скорость и полнота всасывания характеризуют биодоступность лекарства, определяют время наступления действия и его силу. Естественно, что при внутривенном и внутриартериальном введении лекарственное вещество попадает в кровоток сразу и полностью, и его биодоступность составляет 100% (рисунок 2.4.2).

    При всасывании лекарство должно пройти через клеточные мембраны кожи, слизистых оболочек, стенок капилляров, клеточных и субклеточных структур. В зависимости от свойств лекарства и барьеров, через которые оно проникает, а также способа введения все механизмы всасывания можно разделить на четыре основных вида: диффузия (проникновение молекул за счет теплового движения), фильтрация (прохождение молекул через поры под действием давления), активный транспорт (перенос с затратами энергии) и осмос, при котором молекула лекарства как бы продавливается через оболочку мембраны. Подробно об этом рассказывалось в первой части книги, схематично перенос веществ через клеточную мембрану изображен на рисунке 1.4.5. Эти же механизмы транспорта через мембраны участвуют в распределении лекарств в организме, и при их выведении. Обратите внимание, что речь идет о тех же процессах, с помощью которых клетка обменивается веществами с окружающей средой.

    Некоторые лекарства, принимаемые через рот, всасываются путем простой диффузии в желудке, большинство же из них – в тонком кишечнике, имеющем значительную поверхность (примерно 200 м 2 , если “расправить” все ворсинки эпителия) и интенсивное кровоснабжение. Желудок – первая остановка на пути принятых через рот лекарств. Эта остановка довольно короткая. И уже здесь их поджидает первая ловушка: лекарства могут разрушаться при взаимодействии с пищей или пищеварительными соками, в частности, с соляной кислотой. Чтобы избежать этого, их помещают в специальные кислотоустойчивые оболочки, растворяющиеся лишь в щелочной среде тонкого кишечника. Не следует нарушать целостность такой капсулы или таблетки (то есть раскусывать, разжевывать или толочь), чтобы лекарственное средство не потеряло своей активности. Информацию о способе применения назначенного препарата необходимо уточнить в инструкции-вкладыше или на упаковке лекарства.

    Разрушение лекарства под действием желудочного сока – не единственная причина, по которой нежелательно разжевывать или толочь таблетку. Существуют препараты, из которых действующее вещество высвобождается не одномоментно, а постепенно (медленно, длительно или рассчитанно по времени – “порционно”). Если нарушить целостность системы доставки (оболочки капсулы или таблетки) этих средств, действующее вещество высвобождается сразу. При этом в организме пациента может создаться концентрация, значительно превышающая лечебную или даже токсическую. Информацию, касающуюся способа приема лекарственного средства, вы можете получить у лечащего врача и в инструкции по применению препарата.

    В желудке происходит всасывание лекарств, обладающих кислотными свойствами: салициловая кислота, ацетилсалициловая кислота, снотворные средства из группы производных барбитуровой кислоты (барбитураты), оказывающие успокаивающее, снотворное или противосудорожное действие, и других.

    Также за счет диффузии всасываются лекарственные вещества и из прямой кишки при ректальном введении.

    Фильтрация через поры мембран встречается значительно реже, так как диаметр этих пор невелик и через них могут пройти только мелкие молекулы. Наиболее проницаемы для лекарств стенки капилляров, а меньше всего – кожа, верхний слой которой состоит в основном из ороговевших клеток.

    Но интенсивность всасывания через кожу может быть увеличена. Вспомним, что питательные кремы и маски наносят на специально подготовленную кожу (удаление избытка ороговевших клеток, очищение пор, улучшение кровоснабжения достигается, например, с помощью водяной бани), а усиления обезболивающего эффекта при воспалении мышц (в медицине это называется миозитом, а в народе говорят – “продуло”) добиваются с помощью местного массажа, втирая мази и растворы в больное место.

    Всасывание лекарств при сублингвальном применении (под язык) происходит быстрее и интенсивнее, чем из желудочно-кишечного тракта. Врачи советуют в ситуациях, когда требуется быстрое оказание помощи (например, необходимо снять боль во время почечной или печеночной колики – при точно установленном диагнозе!), растолочь таблетку Но-шпы (дротаверина) и держать ее во рту, не проглатывая, вместе с глотком горячей воды. Горячая вода вызывает расширение сосудов полости рта, и спазмолитический эффект препарата в этом случае наступает очень быстро, практически как после внутримышечной инъекции. Однако каждый должен знать, что при болях в животе прием любых обезболивающих или спазмолитических средств категорически запрещен до установления диагноза!

    Лекарства, принимаемые внутрь (а таких лекарств большинство), всасываются из желудочно-кишечного тракта (желудок, тонкая и толстая кишка), и естественно, что процессы, протекающие в нем, влияют на всасывание лекарств в наибольшей степени.

    Конечно, нам было бы очень удобно, если бы все лекарства можно было принимать внутрь. Однако пока этого добиться не удается. Некоторые вещества (например инсулин) полностью разрушаются ферментами в желудочно-кишечном тракте, а другие (бензилпенициллины) – кислой средой в желудке. Такие лекарства применяют в виде инъекций. Этим же способом пользуются, если необходимо оказать экстренную помощь.

    Если лекарство должно оказать действие только на месте введения, его назначают наружно, в виде мази, примочек, полоскания и тому подобное. Некоторые препараты, принимаемые в малых дозах (например нитроглицерин), могут всасываться и через кожу, если их применяют в виде специальных лекарственных форм, например, трансдермальных (“чрескожных”) терапевтических систем.

    Для газообразных и летучих лекарств основным способом является введение в организм с вдыхаемым воздухом (ингаляция). При таком введении всасывание происходит в легких, имеющих обширную поверхность и обильное кровоснабжение. Таким же путем происходит всасывание аэрозолей.

    Что такое биодоступность препаратов

    • В клинической фармакологии этот термин является одной из характеристик действия медикаментозного препарата и наглядно поясняет, какой процент действующего вещества может быть усвоен;
    • Применяется и к лекарственным средствам, но также и к продукции высокого качества категории БАД – витамины, микро- и макроэлементы, минералы, аминокислоты, смешанные составы и тд.;
    • В описании нутриентов и любых БАДов под биодоступностью понимается объем вещества, который при употреблении абсорбирует и оказывает эффект;
    • Биодоступность всегда определяется в ходе исследований препарата и является обязательной информацией в описании лекарственного вещества, а для нелекарственных средств – рекомендованной для описания.

    ПОДРОБНО

    Биодоступность нутриентов и лекарств

    Что влияет на усваиваемость

    Абсорбция комплексов bioniq – особенности

    Биодоступность нутриентов и лекарств

    Все вещества, необходимые для сохранения здоровья, можно разделить на две огромные группы:

    • Лекарственные – все виды препаратов, что производится фармацевтической промышленностью, применяются для лечения, реабилитации, диагностики, профилактики и других медицинских действий. Для этой группы применяется термин «биодоступность»;
    • Нелекарственные – это пищевые добавки, биологически активные вещества, которые используются как активная поддержка медикаментозной терапии или профилактика, регуляция пищевого рациона, программа здорового образа жизни. Это витамины, аминокислоты, минералы, комплексы нутриентов и пр. Эта категория оценивается по абсорбции – эквиваленту фармацевтической биодоступности.

    Для фармакологии

    Именно в отношении медикаментозных составов биодоступность – это величина, показывающая, сколько % от всего объёма действующего вещества достигает цели и оказывает лекарственное воздействие. Эта характеристика лекарственных средств значима в основном для пероральных препаратов (таблетки, капсулы, сиропы и т.д.). С момента поступления в желудок, где начинается усвоение препарата, и до всасывания через стенки кишечника некоторый объем лекарственного состава может разрушиться при контакте, например, с солями желчных кислот.

    Биодоступность лекарственного средства определяется в ходе клинических исследований и указывается в описании к любому фармацевтическому препарату. Эта величина помогает врачу правильно рассчитать эффективную и безопасную дозировку, понять, какой объем вещества в среднем усвоится организмом.

    В отличие от пероральных препаратов, инъекции, а особенно составы, поступающие через внутривенное вливание (капельницу), обладают максимальной усваиваемостью, буквально все 100%. Это объясняется тем, что такие лекарственные составы вводятся сразу в кровь и доставляются кровотоком к цели без потерь, минуя желудочно-кишечный тракт. Однако такой метод доставки лекарственного компонента обоснован в терапии заболеваний, когда организм борется с тяжелыми расстройствами, поражениями.

    Для нутриентов

    В этом случае под биодоступностью тоже понимается свойство препарата проникать в кровь, поступать вместе с ней в ткани, клетки – это и называется абсорбцией. Для средств, не являющихся лекарственными, – витаминов, энзимов, жирных кислот, минералов и др. – применяется именно эта характеристика, больше для сепарации пищевых добавок от лекарственных средств. По своей сути адсорбция также является биодоступностью.

    Чтобы не растеряться с терминологией – так выглядит разница между адсорбцией (оседание и впитывание только поверхностью) и абсорбцией (проникновение вещества внутрь). Так к наружным препаратам применяется термин «адсорбция», а для всех нутриентов, которые принимаются перорально – абсорбция.

    Что влияет на усваиваемость нутриентов

    С биодоступностью не всегда стоит связывать только лишь качество нутриентов. Препятствием может стать нарушенный метаболизм белков, поскольку ни одна реакция в нашем организме не протекает без ферментов (белковые соединения). Они приоритетно важны для ускорения биохимических реакций, помощи в доставке соединений между молекулами. Любым препаратам, введенным в организм внесосудистым путём, приходится буквально «прорываться» через множество барьеров и даже иногда сталкиваться с опасностью преждевременного распада. В отношении составов, не являющихся лекарственными, учитывается несколько решающих факторов.

    • Состояние желудочно-кишечного тракта

    У пациентов, страдающих от заболеваний кишечника, печени, почек, временных или хронических, довольно часто обнаруживается дефицит витаминов обеих групп. Это накапливаемые жирорастворимые, которые всегда растворяются медленнее, и водорастворимые – всасываются быстрее, не накапливаются в организме.

    • Взаимодействие компонентов и влияние других веществ

    В этом случае существенную роль играют три типа реакций: фармацевтическая, фармакокинетическая и фармакодинамическая, то есть особенности изготовления, неправильное хранение и переработка нутриентов. Например, некорректно рассчитанные сочетания доз в мультикомплексах могут привести к конфликту между элементами. Конкурируют, например, кальций и железо, а витамин В12 может усилить действие витамина В1, что спровоцирует аллергическую реакцию. Однако при взвешенном сочетании объемов эти же элементы оказывают определенно конструктивное действие в организме.

    Некоторые фармацевтические препараты также могут угнетать активность нутриентов: антибиотики снижают абсорбцию витаминов В1, В5 и К, гормоны и стероиды «мешают» кальцию, витамину В6, а популярное лекарственное средство Аспирин буквально вымывает из организма витамина С, В9 (фолиевая кислота) и цинк.

    • Форма изготовления и дозировка препарата

    Для пероральных нутриентов форма изготовления очень важна, от того, насколько верно выбран метод производства, зависит качество мультикомплекса. Гранулирование, микрокапсульные технологии, применение вспомогательных веществ, специальные виды прессования – всё это прямо влияет на то, в каком объёме, с какой скоростью компоненты будут высвобождаться в организме. С помощью формы лекарственного средства и пищевой добавки можно влиять на время распада компонентов.

    Почему это важно?

    Питательным веществам, растворяющимся уже в желудке, почти невозможно сохранить биологическую активность до момента попадания нутриентов через протоки в тонкий и только потом в толстый кишечник. Особенно форма препаратов важна для водорастворимых витаминов, поскольку их окончательная усваиваемость происходит именно в стенках толстого кишечника. Вероятность того, что компоненты «доживут» до цели не так уж высока.

    Всё это определяет скорость и полноту всасывания нутриентов, влияет на динамику их абсорбции, время поддержания полезной концентрации в крови – то есть является биодоступностью состава.

    Биодоступность комплексов bioniq – особенности

    Подытожим. Чтобы комплекс нутриентов был действительно полезен и отвечал потребностям в каждом индивидуальном случае, необходимо придерживаться основных требований к препаратам:

    • Корректное сочетание элементов в одном комплексе нутриентов;
    • Форма изготовления, позволяющая сохранить максимальную эффективность;
    • Биологическая индивидуальность.

    Биодоступность нутриентов bioniq LIFE и bioniq BALANCE отличается в первую очередь персонализированностью формул – состав каждого комплекса «собирается» на основе данных в анализах крови. Сочетание, объем питательных элементов рассчитывается на индивидуальных данных каждого. Именно анализы крови позволяют узнать о текущем состоянии здоровья, наличии/нехватке различных элементов, рассчитать потребность в нутриентах и их сочетаемость в каждой персональной формуле. Так исключается метаболическая несовместимость, конфликты с имеющейся концентрацией витаминов и питательных соединений.

    Читайте также  Как использовать алоэ вера в лечебных целях?

    8 лет исследований, которые проводились силами специалистов bioniq, позволили прийти к решению с реализацией управляемой абсорбции компонентов в кишечнике, с их контролируемым распределением и высвобождением в течение длительного периода. Это означает, что формула принимаемых нутриентов bioniq работает на протяжении многих часов, постоянно обеспечивая организм питательными веществами по степени потребности.

    Для препаратов группы нутриентов, имеющих природное происхождение, абсорбция строится на обращении к активному транспортному механизму. Это перенос молекул вещества через мембрану клетки, при использовании энергии метаболических процессов.

    Механизм активного транспорта – система, позволяющая нутриентам всасываться и усваиваться быстрее, и не работает на лекарственных составах. Но именно в случае с питательными веществами скорость важна только в момент их доставки до места всасывания, то есть в кишечник. Для этого была выбрана форма гранул с прессованием: это позволяет добиться перехода частей препарата без значимых потерь. Перехода из желудка, где степень кислотности довольно большая, непосредственно в кишечник, чтобы там начать высвобождение питательных соединений.

    Элементы формулы абсорбируются намного дольше, в течение 12 часов, такая эффективность была достигнута также гранулированием препаратов. Можно уверенно сказать, что активные вещества в составе любого из препаратов bioniq работают так, если бы это были натуральные фрукты, овощи. Биодоступность природной пищи в этом случае идентична комплексу нутриентов: фактически, весь состав формулы усваивается с той же эффективностью, что и растительная пища.

    Биодоступность пероральных препаратов

    По данным Всемирной организации здравоохранения, жертвами туберкулеза ежегодно становятся порядка 1,7 миллионов и ежедневно умирают около 5 тысяч человек. Происходит быстрое распространение лекарственно-устойчивой формы туберкулеза. В отчете ВОЗ «Глобальный доклад 2010 года об эпидемическом надзоре и ответных действиях» от 18 марта 2010 г., особое внимание уделяется росту заболеваемости множественным лекарственноустойчивым туберкулезом [9].

    По данным ВОЗ, в некоторых районах мира у каждого четвертого человека с туберкулезом развивается форма болезни, которая не поддается стандартному лечению противотуберкулезными препаратами первой линии. В настоящее время к странам, где наблюдается высокий уровень заболеваемостью туберкулезом с приобретенной множественной и широкой лекарственной устойчивостью, относятся и страны СНГ, в том числе Россия и Казахстан.

    Крайне неблагоприятная ситуация складывается в отношении лечения детей, больных туберкулезом, поскольку в мире ранее не выпускались специальные лекарственные формы для детей. В основном для лечения детей использовались лекарственные препараты, предназначенные для взрослых. В этих случаях таблетки размалывали и расфасовывали в соответствующих дозах. В большинстве случаев это приводило к снижению терапевтической активности лекарственных препаратов и проявлению ряда побочных эффектов[9, 10].

    В декабре 2007 года ВОЗ была объявлена глобальная кампания по производству лекарственных средств для детей, вызванная необходимостью улучшения доступа к безопасным лекарствам для всех детей в возрасте до 15 лет. Оптимальными для детей лекарственными препаратами являются адаптируемые твердые оральные формы, предпочтительно диспергируемые таблетки [3].

    Фармацевтической компанией «РОМАТ», Казахстан, разработан состав и технология нового детского лекарственного препарата – Изониазид-Д (диспергируемые таблетки) на основе инкапсулирования изониазида с β-циклодекстрином для снижения токсичности, маскировки неприятного вкуса и повышения стабильности при хранении противотуберкулезного препарата изониазида [2].

    Создание воспроизведенных лекарственных препаратов (дженериков) предполагает обязательное проведение фармакокинетических исследований, оценку их биоэквивалентности оригинальному лекарственному препарату, что является основным видом медико-биологического контроля их качества [1, 5].

    Исходя из сказанного, целью настоящей работы явилось изучение относительной биодоступности Изониазида-Д таблетки диспергируемые производства ТОО «Павлодарский фармацевтический завод», Республика Казахстан, в сравнении с лекарственным препаратом Изониазид таблетки диспергируемые (Кадила Фармасьютикалс Лтд, Индия).

    Материалы и методы исследования

    Изониазид – противотуберкулезный препарат первого ряда, производное гидразида изоникотиновой кислоты (гидразид 4-пиридинкарбоновой кислоты).

    Тестируемый препарат – таблетки диспергируемые изониазид 0,1 г производства ТОО «Павлодарский фармацевтический завод», Республика Казахстан. В качестве препарата-сравнения выбран аналог, не зарегистрированный в Республике Казахстан – таблетки диспергируемые 0,1 г производства Кадила Фармасьютикалс Лтд, Индия, так как на фармацевтическом рынке Казахстана отсутствует аналог тестируемого препарата по лекарственной форме и дозировке.

    Исследование проводилось на кролика-самцах породы Шиншилла массой тела – 3,19 ± 0,41 кг, полученных из питомника ТОО НПП «Антиген» (г. Алматы).

    В «случайном» порядке животным с помощью зонда внутрь вводили 1 таблетку испытуемого лекарственного препарата Изониазида-Д таблетки диспергируемые 0,1 (Т) или 1 таблетку препарата сравнения Изониазид таблетки диспергируемые 0,1 (R). Промежуточный период составил 7 дней, по истечении которого препараты вводили в обратном порядке.

    Образцы крови (около 1,0 мл) отбирали из краевой ушной вены с помощью игл и переносили в центрифужные пробирки, предварительно обработанные гепарином. Взятие образцов крови для последующего определения содержания препарата в плазме крови осуществлялось в дискретные интервалы времени: через 0; 0,5; 1,0; 2,0; 3,0; 4,0; 6,0; 8,0; 12,0 и 24,0 часа после их перорального введения. Образцы крови отстаивались в течение 15 минут в условиях комнатной температуры. После центрифугирования (3000 об/мин в течение 10 минут) отбирали плазму крови, которая хранилась при температуре –30 °С в морозильной камере «Premium».

    Для количественного определения изониазида в плазме крови использовали хроматографический метод [4]. Анализ проводили на жидкостном хроматографе «Agilent 1100» с УФ-детектором и компьютером с соответствующим пакетом программ для обсчета результатов. Условия хроматографирования: аналитическая колонка – «Zorbax Bonus-RP», Agilent (150´4,6 мм; 5 мкм); подвижная фаза: градиент растворителей А и В, профильтрованная через мембранный фильтр с размером пор 0,45 мкм и дегазированная на ультразвуковой бане; скорость потока элюента – 1,0 мл/мин; детектирование проводили при длине волны – 280 нм; температура колонки + 35 °С.

    Для экстракции изониазида из плазмы крови 0,5 мл плазмы помещали в пробирку Centrisart I и центрифугировали в течение 15 мин при 4500 об/мин. По 50 мкл надосадочной жидкости вводили в петлю инжектора. Процент извлечения изониазида составил 84,6 % ± 6,7 (среднее из 3 определений). В диапазоне концентраций 10; 25; 50 и 100 мкг/мл калибровочная зависимость была линейной.

    Количественное определение изониазида проводили методом абсолютной калибровки. В описанных условиях время удерживания изониазида составило 3,25–4,33 мин. В диапазоне концентраций 10–100 мкг/мл калибровочная кривая была линейной. Стандартная кривая изониазида описывалась уравнением: y = 46,756x + 178,42 (R2 = 0,9636), где y – площадь хроматографического пика изониазида; х – концентрация в мкг/мл. Минимальная обнаруживаемая концентрация составила 0,01 мкг/мл; относительная ошибка для концентрации 100 мкг/мл не более 32,8 %.

    Полученные данные предварительно были подвергнуты математической статистической обработке с помощью программы «Excel». Расчет фармакокинетических параметров анализируемых препаратов был проведен с использованием программы «ANOVA».

    Результаты исследования и их обсуждение

    С целью оценки биологической доступности исследуемых лекарственных средств были определены концентрации изониазида в сыворотке крови кроликов: рассчитаны основные фармакокинетические параметры, позволяющие количественно охарактеризовать относительную биодоступность (f), величины площадей под фармакокинетическими кривыми зависимости «концентрация-время» (AUC0-360), время достижения максимальной концентрации (Тmax) и значения максимальных концентраций (Сmax) [1, 7].

    На рисунке представлен усредненный фармакокинетический профиль изониазида после введения тестируемого и референс-препаратов.

    Усредненный фармакокинетический профиль изониазида в плазме крови кроликов после однократного перорального введения Изониазида-Д (Т) и Изониазида (R)

    Профили концентраций изониазида препаратов Изониазид-Д (T) и Изониазид (R) схожи. Фармакокинетические кривые изониазида показывают, что исследуемое соединение определяется на протяжении 12 часов после однократного введения животным испытуемого препарата и препарата сравнения.

    В табл. 1 представлены фармакокинетические параметры изониазида у кроликов после введения исследуемых препаратов.

    Индивидуальные и средние значения фармакокинетических параметров изониазида тестируемого (Т) и референс-препаратов (R)

    Биодоступность пероральных препаратов

    • Об издании
      • О журнале
      • Цели и задачи журнала
      • Редакционная коллегия
      • Страница журнала в РИНЦ
      • Контакты
    • Архив номеров
    • Подписка
    • Авторам
      • Авторский договор
      • Порядок рецензирования
      • Требования к публикациям
      • Отправить статью
      • Декларация о приватности
      • Декларация о конфликте интересов
      • Критерии авторства
    • Стандарты этики

    Особенности фармакологии водорастворимой формы витамина D на основе мицелл

    (1) ГБОУ ВПО «Ивановская государственная медицинская академия» МЗ РФ, Иваново; (2) Российский сотрудничающий центр Института микроэлементов ЮНЕСКО, Москва; (3) ФГБУН «Вычислительный центр им. А.А. Дородницына» РАН, Москва

    Введение

    Витамин D – жирорастворимый витамин-гормон, влияющий на широкий спектр физиологических процессов, включая формирование структуры кости, иммуномодуляцию, развитие нервной системы, регуляцию сосудистого тонуса и артериального давления. Достаточная обеспеченность витамином D характеризуется противоопухолевым, нейропротекторным и нейротрофическим эффектами [1].

    Для осуществления своих разносторонних биологических эффектов жирорастворимый витамин D должен эффективно всосаться из тонкого кишечника, поступить в кровь. Обогащенная биологически активными формами витамина D кровь доставляет витамин ко всем тканям организма, в которых расположены рецепторы витамина D (VDR – vitamin D receptor).

    Всасывание и биодоступность

    Скорость кишечного всасывания витамина D наиболее высока в проксимальных и средних сегментах тонкой кишки [2]. При этом, как и в случае других жирорастворимых витаминов [3], всасывание витамина D существенно зависит от присутствия других нутриентов [4].

    Фармакологические и физико-химические исследования показали, что кишечная абсорбция витамина D наиболее полно происходит из растворов т.н. мицелл [5]. В физической химии мицеллы (от лат. mica – крупинка) – коллоидные наночастицы, образующие мелкодисперсную взвесь в большом объеме растворителя. В случае биологических систем такими растворителями являются водные растворы, образующие внутреннюю среду организма.

    Мицеллы – наночастицы (10… 1000 нм в диаметре) с «жировой начинкой» (содержащей витамин D) и гидрофильной оболочкой, которая позволяет наночастицам равномерно распределяться по всему объему водного раствора. Именно за счет образования мицелл и происходит «солюбилизация» витамина D (т.е. переход в водорастворимую форму) [6]. В настоящей работе рассмотрены результаты фармакологических исследований витамина D, указавшие на принципиальное значение мицеллообразования для полноценного всасывания витамина D.

    Фундаментальные физико-химические принципы образования мицелл в водных растворах

    В водной среде мицеллы образуются особыми амфифильными молекулами (поверхностно активными веществами – ПАВ, или эмульгаторами), т.е. молекулами, имеющими гидрофобный «хвост» (выталкиваемый из водного раствора вследствие сил поверхностного натяжения) и гидрофильную «голову» (наоборот, обладающую повышенным сродством к водному раствору). Такими молекулами являются, например, липиды. Поскольку гидрофобные хвосты амфифильных молекул выталкиваются из водного раствора, энергетически выгодной является такая конфигурация, в которой гидрофобные концы «скрыты» от растворителя, а гидрофильные концы молекул, наоборот, максимально взаимодействуют с молекулами воды.

    Мицеллообразование имеет большое значение для усвоения организмом жирорастворимых витаминов и сложных липидов. Соли желчных кислот, образуемые в печени и поступающие из желчного пузыря, стимулируют мицеллообразование жирных кислот (ЖК). Именно за счет этих мицелл и осуществляется всасывание сложных липидов (например, лецитина) и жирорастворимых витаминов (А, D, Е и К) в тонком кишечнике.

    Мицелла является энергетически выгодной конфигурацией амфифильных молекул (рис. 1). При образовании мицеллы несколько десятков или сотен амфифильных молекул объединяются так, что гидрофобные концы образуют ядро (внутреннюю область), а гидрофильные группы – поверхностный слой мицеллы, окруженный стабилизирующей оболочкой молекул растворителя и адсорбированных из водного раствора ионов.

    Мицеллы, как правило, имеют сферическую форму, хотя возможно образование эллипсоидов или цилиндров. Форма и размер мицеллы зависят от молекулярной структуры амфифильных молекул ПАВ (в частности, их гидрофильно-липофильного баланса, см. ниже) и таких условий образования раствора, как концентрация ПАВ, температура, рН и ионная сила («соленость»). Мицеллы образуются, только когда концентрация поверхностно-активного вещества больше, чем критическая концентрация мицеллообразования (ККМ), а температура системы превышает критическую температуру мицеллообразования (КТМ, или температура Крафта) [7, 8].

    Важнейшим параметром любого ПАВ является гидрофильно-липофильный баланс (ГЛБ), который вычисляется как ГЛБ=20хMh/M, где Mh – молекулярная масса гидрофильной части («головы») молекулы, а M – молекулярная масса всей молекулы. Значение ГЛБ=0 соответствует полностью липофильной (гидрофобной) молекуле (например, бензол, бутан и др.), а значение 20 соответствует полностью гидрофильной (липофобной) молекуле (сама молекула воды, муравьиная кислота и др.) (рис. 2).

    Читайте также  Костные разрастания позвоночника

    Зависимость параметров образуемых мицелл от молекулярной структуры инкапсулируемого в мицелле вещества может быть наглядно проиллюстрирована на примере включения витамина Е (токоферол), витамина D (холекальциферол) и экстракта масла лимона в мицеллы на основе одного и того же ПАВ (Tween-20, 1%-ный раствор) с относительно коротким гидрофобным хвостом (цепь из 11 атомов углерода, около 1,1… 1,3 нм) и очень большой гидрофильной головкой (включает 25 атомов кислорода). Вследствие короткого хвоста даже такие сравнительно небольшие молекулы, как витамины E и D, будут оказывать существенное воздействие на мицеллобразование в данной системе (рис. 3) [9].

    Так, молекулы токоферола характеризуются вытянутой формой (гидрофобный «хвост» из 13 атомов, гидрофобная головка бензодигидропиранового ядра), поэтому токоферолы встраиваются, не нарушая структуры ядра.

    В результате мицеллы получаются «одна к одной», т.е. имеют небольшой разброс в размерах.

    Более «массивная» молекула витамина D (стероидное ядро с разветвленной цепью) вносит дополнительные искажения в процесс мицеллообразования, так что получающиеся мицеллы характеризуются гораздо большей неоднородностью размеров – пик уширяется.

    В случае лимонного масла, которое является смесью различных молекул (средняя молекулярная масса порядка 1000 Да), эти компоненты смеси, очевидно, группируются по размерам и образуются мицеллы двух существенно различных размеров (два сравнительно больших пика на рис. 3).

    Желчные кислоты, мицеллообразование и биоусвояемость витамина D

    Оценка эффективности всасывания различных форм витамина D в эксперименте (моделирование фистул желудочно-кишечного тракта у крыс) указала на различные пути всасывания витамина D3 (1,25-дигидроксивитамина D3, 25-гидроксивитамина D3, холекальциферола) из мицеллярных растворов. При помещении мицеллярных растворов (содержащих 50 нмоль витамина D3 с радиоактивной меткой) в сегменты тощей кишки гидроксилированные формы витамина поступали в первую очередь в венозный кровоток. Средняя скорость венозного транспорта 1,25-(OH)2-D3 составила 1830 нмоль/мин/г, а 25-(OH)-D3 – ниже 900 нмоль/мин/г, а холекальциферола – всего 13 нмоль/мин/г. 25-гидроксилирование холекальциферола и 1-гидроксилирование всосавшегося 25-(OH)-D3 стимулировало транспорт через воротную вену. Без использования мицеллярной формы всасывание витамина D резко снижалось [10].

    В норме мицеллы, содержащие витамин D, образуются в кишечном транзите под действием природных эмульгаторов – желчных кислот.

    В эксперименте дефицит желчных кислот существенно снижал всасывание витамина D в кишечнике. При лигировании брыжеечных желчных протоков всасывание трех основных метаболитов витамина (витамин D3, 25-гидроксивитамин D3 и 1,25-дигидроксивитамина D3) в лимфу заметно снизилось [11]. Добавление таурохолата достоверно повышало всасывание витамина (рис. 4).

    Смешанные мицеллы витамина D, образованные с использованием липидов, характеризуются улучшенным всасыванием витамина D в лимфу. Мицеллы для транспорта витамина D изготавливались с использованием ЖК, моноглицеридов и желчных кислот. Количество витамина D, появляющегося в лимфе экспериментальных животных, было значительно выше при интрадуоденальном введении именно смешанных мицелл на основе линолевой или пальмитиновой кислот по сравнению с мицеллами только на основе желчных кислот (таурохолат). Липиды в составе мицелл для переноса витамина D ускоряли процесс транспорта из слизистой оболочки внутрь эпителиоцитов кишечника [12].

    Молекулярная структура ЖК и их концентрация модулируют мицеллообразование и всасывание витамина D. Исследование свойств мицелл, образованных различными ЖК, показало, что длинноцепочечные ЖК в концентрациях порядка 500 мкмоль/л снижают всасывание холекальциферола, а омега(Ω)-9 олеиновая кислота и Ω-3 эйкозапентаеновая кислота (ЭПК) значительно повышают всасывание холекальциферола (рис. 5.) [13]. Продуктами-концентраторами олеиновой кислоты являются орехи (фундук, кешью), папайя, треска, оливковое масло; продукты концентраторы ЭПК – сардины, скумбрия, сельдь.

    Помимо мицеллообразования важно отметить и то, что влияние ЖК на всасывание витамина D зависит от воздействия кислот на белки липидного транспорта. Иначе говоря, витамин D (в форме провитамина, холекальциферола) всасывается не просто за счет пассивной диффузии, но и посредством таких белков – транспортеров холестерина, как NPC1 (Niemann-Pick type C proteins, осуществляет внутриклеточный транспорт липидов, предотвращает накопление липидов продуктов в эндосомах и лизосомах), SR-BI рецептор (scavenger receptor class B type I, облегчает всасывание сложных эфиров холестерина в печени из липопротеидов высокой плотности), MTTP (microsomal triglyceride transfer protein, микросомальный транспортный белок триглицеридов, играет центральную роль в сборке частиц липопротеидов), ABCA1 (АТФ-связывающий транспортер, регуляторный белок потока холестерина). Действительно, разные ЖК по-разному воздействуют на экспрессию этих белков (рис. 6) и, соответственно, на усвоение витамина D (рис. 5) [13].

    С практической точки зрения результаты этого эксперимента позволяют сделать несколько важных выводов. Во-первых, пища с высоким содержанием олеиновой кислоты будет наиболее эффективно повышать всасывание витамина D из мицелл. В то же время высокое содержание пальмитиновой кислоты в пище (маргарин, твердые растительные жиры, свиной и говяжий жиры) будет затруднять усвоение витамина D (в частности, за счет достоверного снижения экспрессии белков – транспортеров холестерина).

    Результаты клинических исследований подтвердили важность солюбилизации и мицеллообразования для усвоения витамина D. Всасывание витамина D3 в тощей кишке оценивалось у здоровых добровольцев после стандартизированного для всех участников завтрака (каша, йогурт, напиток). Изучение кривых концентраций витамина D3 в водной фазе в течение 30 минут после приема пищи показало, что более высокое всасывание коррелировало с более высокими уровнями желчных кислот и свободных ЖК (рис. 7). Существование таких корреляций соответствует образованию смешанных мицелл (витамин D3, липиды, желчные кислоты) в водной фазе [14].

    В клиническом исследовании было показано, что эмульгатор d-α-токоферол полиэтиленгликоль-1000 сукцинат (ТПГС) усиливает всасывание витамина D при хроническом холестазе у детей. Сравнение эффектов приема 1000 МЕ/кг витамина D и той же дозы витамина D в смеси с ТПГС (25 МЕ/кг) показало, что у пациентов с холестазом прием только витамина D не приводил к достоверному повышению уровней 25-гидроксивитамина в крови (вследствие существенного снижения секреции желчных кислот). В то же время прием витамина D в смеси с ТПГС показал площадь под кривой на +156±33 нг/мл бóльшую по сравнению с витамином D (р

    Лечение железодефицитной анемии и дефицита железа

    Лечение железодефицитной анемии и дефицита железа

    О современных представлениях коррекции дефицита железа и основных характеристиках железосодержащих препаратов, принципах их выбора и дозирования при железодефицитных состояниях.

    Диета при железодефиците и источники железа в пище

    Основным источником железа для человека являются продукты животного происхождения. В природе железо существует в двух химических формах: 2-валентное (гемовое) и 3-валентное (негемовое). Гемовое железо хорошо всасывается в кишечнике. Наиболее богаты гемовым железом мясо, особенно говядина, кровяная колбаса. В птице и рыбе гемового железа гораздо меньше. Печень (свиная и телячья), почки, сердце, ливерная колбаса богаты ферритином и гемосидерином, содержащими негемовое железо (последнее плохо всасывается в желудочно-кишечном тракте). Много негемового железа содержится в некоторых марках красного вина, фруктовых соках, яблоках, гранатах, гречневой крупе, молочных продуктах, яйцах, орехах и шоколаде. Биодоступность такого железа минимальна, и все эти продукты не являются источником железа. Вегетарианство является мощным фактором риска железодефицитной анемии (ЖДА) в любом возрасте. При этом в рацион должны входить зелень, овощи, фрукты, т. к. усвоение железа улучшается при наличии в пище витамина С. Всасывание железа ухудшают танин (содержащийся в чае и кофе), фитин (содержащийся в рисе, соевой муке), молоко и творог из-за высокого содержания кальция. Поскольку усвоение железа из пищи ограничено, медикаментозная терапия анемии является основной.

    Всемирной организацией здравоохранения (ВОЗ) в 1993 – 2005 годах проведено глобальное исследование, показавшее, что 24,4% всех жителей земного шара страдает разными формами анемии. Чаще всего анемия встречается у детей дошкольного возраста (47% от общей популяции), беременных женщин (41,8%) и небеременных женщин детородного возраста (30,2%). В структуре анемий: 37% занимает железодефицитная анемия, 27% – анемия при хронических заболеваниях (АХЗ).

    Среди женщин фертильного возраста лидирующие позиции занимает железодефицитная анемия (ЖДА). Анемический синдром является самым частым гематологическим синдромом, встречающимся в клинической практике. Анемия – это не диагноз, а только синдром, требующий особого алгоритма дифференциальной диагностики.

    Исследование ВОЗ свидетельствуют о том, что ЖДА является третьей по распространенности причиной временной потери трудоспособности у женщин в возрасте 15–44 лет. Наряду с собственно ЖДА существует скрытый дефицит железа, который в Европе и России составляет 30–40%, в отдельных регионах – 50–60%. По данным ВОЗ, дефицит железа определяется у 20–25% всех младенцев, 43% – у детей в возрасте до 4 лет и до 50% – у подростков (девочки). Таким образом, наиболее частыми анемиями как в Беларуси, так и в других странах, являются ЖДА и АХЗ. Анемия является ведущим фактором ухудшения самочувствия пациента, по приблизительным оценкам ею страдают 2,4 млрд населения земного шара.

    Основными причинами развития железодефицитной анемии являются: кровопотери (обильные менструальные кровотечения, беременность, роды, желудочно-кишечные, легочные, при заболевании почек); нарушения всасывания железа (резекция желудка и кишечника, недостаточность поджелудочной железы, глютеновая энтеропатия, болезнь Крона); повышенная потребность в железе (быстрый рост, недоношенные, новорожденные дети, подростки, беременность и лактация); недостаточное поступление с пищей (вегетарианская или веганская диета).

    Необходимо помнить, что ЖДА – финал выраженного железодефицита, при котором снижается эритропоэз (кроветворение) и, как следствие, уменьшается содержание гемоглобина.

    Различают три стадии дефицита железа:

    • предлатентный;
    • латентный;
    • манифестный.

    Предлатентный дефицит железа характеризуется снижением запасов микроэлемента без уменьшения расходования железа на эритропоэз. Латентный дефицит железа наблюдается при полном истощении запасов микроэлемента в депо, однако признаков развития анемии нет. Манифестный дефицит железа, или железодефицитная анемия (ЖДА), возникает при снижении гемоглобинового фонда железа и имеет характерные симптомы. Снижение концентрации сывороточного ферритина ниже 12 мкг/л у здоровых детей и 15 мкг/л у взрослых, с поправкой ниже 30 мкг/л у детей и 70 мкг/л у взрослых с инфекционными или воспалительными заболеваниями, означает неизбежное снижение концентрации гемоглобина в последующем.

    Основой патогенетической терапии ЖДА является применение препаратов железа внутрь. Лечение препаратами железа должно быть длительным и зависит от исходной тяжести анемии (уровня гемоглобина и дефицита железа).

    На амбулаторном этапе лечение осуществляется при уровне гемоглобина >80 г/л и удовлетворительном общем состоянии пациента. Пероральное назначение железосодержащих ЛС в дозе 200-300 мг/сутки в течение 4-6 недель до нормализации уровня гемоглобина, после чего продолжается прием ЛС в дозе 100 мг/сутки в течение 2-3 месяцев до содержания ферритина не менее 40 мкг/л. Необходим поиск причины дефицита железа и устранение причины дефицита железа – это лечение основного заболевания, вызвавшего дефицит железа.

    Принципы выбора препарата железа для терапии

    В настоящее время пероральные препараты железа разделены на две основные группы: ионные и неионные (последние представлены протеиновым и гидроксиполимальтозным комплексом 3-валентного железа).

    Ионные препараты представлены солями 2-валентного железа, в т. ч. сульфатом железа (феррофол, тардиферон, ферроплекс, сорбифер, ферро-фольгамма и др.); хлоридом железа (гемофер); полисахаридными соединениями – глюконат-фумаратными комбинациями (хеферол, ферронал, мегаферрин). Хелаты 2-валентного железа (цитрат, лактат, глюконат, сукцинат) всасываются лучше, чем сульфат железа. В случае непереносимости солевых препаратов 2-валентного железа, являющихся на сегодняшний день наиболее эффективными в лечении анемии и восполнении депо железа, возможно использование неионных препаратов 3-валентного железа в виде гидроксиполимальтозного комплекса (мальтофер, биофер, феррум лек и др.).

    При выборе лекарственного препарата и оптимального режима дозирования необходимо помнить, что адекватный прирост показателей гемоглобина при ЖДА может быть обеспечен поступлением в организм от 30 до 100 мг 2-валентного железа. Учитывая, что при развитии ЖДА всасывание железа увеличивается на 25–30% (при нормальных запасах железа в организме – всего 3–7%), назначают от 100 до 300 мг 2-валентного железа в сутки. Применение более высоких доз не имеет смысла, поскольку всасывание железа при этом не увеличивается. Степень абсорбции 2-валентных солей железа в несколько раз выше, чем 3-валентного, поэтому препараты, содержащие 2-валентное железо, дают быстрый эффект и нормализуют уровень гемоглобина в среднем через 1–2 месяцев, а нормализация уровня железа в депо происходит через 3–4 месяца от начала лечения и зависит от степени тяжести анемии и дозы препарата. Требуется более длительное применение препаратов, содержащих железо в 3-валентном состоянии, в случае дефицита меди в организме они будут неэффективны. Нормализация уровня гемоглобина при лечении препаратом 3-валентного железа наступит только через 2–4 месяца, а восполнение дефицита железа в депо – через 5–7 месяцев от начала терапии. Степень абсорбции отражается и на частоте развития побочных эффектов. Уменьшить нежелательное влияние твердых форм препаратов железа (таблетированных, капсулированных) на слизистую оболочку ЖКТ можно, принимая их во время еды, но при этом уменьшается всасывание железа.

    Читайте также  Тендинит ахиллова сухожилия симптомы

    При приеме препаратов в достаточной дозе на 7–10-й день от начала лечения наблюдается повышение количества ретикулоцитов. Нормализация уровня гемоглобина отмечается через 3–4 недели от начала лечения, а в ряде случаев затягивается до 6–8 недель. Общая длительность лечения зависит от исходной тяжести анемии. Стандартные сроки проведения ферротерапии ЖДА: при легкой степени тяжести – 4-6 недель, при средней степени – 8–12 недель, при тяжелой – 16 недель и более. На фоне применения ферропрепаратов внутрь наиболее часто возникают тошнота, рвота, анорексия, запоры (т. к. железо связывает сероводород, являющийся физиологическим стимулятором моторики), реже – поносы, металлический привкус во рту, окрашивание слизистых оболочек и зубов в черный цвет, аллергические реакции, головная боль. Эти побочные эффекты приводят к частым отказам пациентов от лечения.

    Биодоступность двухвалентных солей железа в несколько раз выше, чем трехвалентных, так как они свободно диффундируют через каналы ДМТ1-белков и ферропортин. Фармакологический эффект препаратов быстрый, и нормализация уровня гемоглобина в среднем происходит через 2 недели ‒ 2 месяца, а восполнение депо железа происходит уже через 3‒4 месяца от начала лечения, в зависимости от тяжести анемии и дозировки препарата. В связи с чем ВОЗ рекомендует препараты двухвалентного железа в качестве стартовой терапии железодефицитной анемии. Всасывание ионов из препаратов трехвалентного железа более медленное, так как необходима активная (энергозависимая) трансформация с участием феррооксидаз. Поэтому такие препараты требуют более длительного применения, а в случае дефицита меди в организме будут неэффективны вообще.

    Лекарственный препарат Феррофол производства УП «Минскинтеркапс» содержит в одной капсуле 50 мг сульфата железа (II) и 500 мкг фолиевой кислоты. Применяя Феррофол в среднесуточной дозировке по 1 капсуле 2-3 раза в день за 1 час до еды (100-150 мг в сутки), достигается цель лечения железодефицитной анемии – введение железа в количестве, необходимом для нормализации уровня гемоглобина, соответствует рекомендации ВОЗ об оптимальной лечебной дозе.

    Лекарственный препарат Феррофол отвечает основным требованиям к проведению лечения препаратами железа:

    • достаточное содержание элементарного железа в препарате;
    • использование сульфата железа, обеспечивающего наибольшую биодоступность;
    • введение с препаратом железа фолиевой кислоты, играющей важную роль в гемопоэзе; недостаток этих витаминов вызывает нарушение синтеза ДНК в кроветворных клетках, что негативно влияет на скорость синтеза гемоглобина.

    Преимущества препарата Феррофол:

    выпускается в форме капсул пролонгированного действия, активные ингредиенты содержатся в пеллетах (микрогранулах), которые обеспечивают их всасывание в верхнем отделе тонкой кишки, в связи с чем отсутствует местное раздражающее действие на слизистую оболочку желудка, что обеспечивает хорошую желудочно-кишечную переносимость. Использование пеллет в капсулах Феррофол позволяет изолировать друг от друга активные вещества – фолиевую кислоту и железо в одной готовой форме. Фолиевая кислота повышает синтез ДНК в кроветворных клетках, что положительно влияет на скорость синтеза гемоглобина, а значит, более быстрое купирование анемии.

    Лекарственный препарат Феррофол показан для профилактики и латентного дефицита железа и железодефицитной анемии, особенно во время беременности.

    Профилактика железодефицитной анемии и латентного дефицита железа показана пациентам группы риска, к которым относятся:

    • беременные женщины и в период лактации;
    • женщины с промежутком между беременностями менее 2 лет;
    • продолжающиеся или рецидивирующие кровотечения лица с наследственными геморрагическими гемостазиопатиями;
    • лица с хроническими болезнями почек с установленным дефицитом железа;
    • лица с содержанием ферритина в крови менее 30 мкг/л (тканевой дефицита железа);
    • женщины с длительностью менструаций более 5 дней.

    Феррофол – комбинированный лекарственный препарат, восполняющий дефицит железа и фолиевой кислоты в организме.

    Капсулы нужно глотать целиком, запивая стаканом воды. Капсулу нельзя рассасывать, разжевывать и держать во рту.

    Прием осуществляют до или во время приема пищи, в зависимости от желудочно-кишечной переносимости.

    Имеются медицинские противопоказания и нежелательные реакции.

    ПЕРЕД ПРИМЕНЕНИЕМ ЛЕКАРСТВЕННОГО ПРЕПАРАТА ОЗНАКОМЬТЕСЬ С ИНСТРУКЦИЕЙ

    13. Биодоступность лекарственных средств. Определение. Факторы, влияющие на биодоступность. Примеры.

    Биодоступность — это объем лекарства, который достиг основного места своего действия в человеческом или животном организме. Этим термином обозначается количество утерянных и сохраненных полезных веществ, которые благотворно влияют на организм. Таким образом, при высокой степени биодоступности можно судить о малом количестве утерянных лечебных свойств любого препарата.

    Как определяется данный показатель?

    При стандартных формах исследования биодоступность лекарственных веществ выявляется методом определения объема лекарства в крови, то есть тем количеством, которое достигло кровеносной системы. При различных методах введения она имеет различные показатели. Так, при внутривенном способе биодоступность достигает 100 %. А если имела место пероральная биодоступность, то объем значительно снижается за счет неполного всасывания и распада лекарства на отдельные компоненты. Данный термин также применяется и в фармакокинетике для подсчета правильной дозировки, которой следует придерживаться больному при различных приемах введения препарата в организм.

    Выделяют две стадии биодоступности: Абсолютная. Относительная.

    Понятие абсолютной биологической доступности

    Абсолютная биодоступность — это показатель, образующийся в результате сравнительного анализа биологической доступности лекарства, введенного любым, кроме внутривенного, способом и доступности препарата, введенного внутривенно. Отражается он в виде площади под кривой «объем – время», сокращенно «ППК». Осуществить подобную процедуру можно только при выполнении такого условия, как употребление различной дозировки разными методами введения в организм.

    Для определения количества абсолютной биологической доступности осуществляется проведение фармакокинетического исследования, целью которого является получение сравнительного анализа «объема лекарства по отношению ко времени» для внутривенного и иного метода внедрения. Таким образом, абсолютная биодоступность лекарственных средств — это ППК для измененной дозировки, получаемой в ходе деления ППК иного метода введения и внутривенного.

    Понятие относительной биологической доступности

    Относительная биодоступность — это ППК препарата, подвергшаяся сравнению с другой разновидностью этого же препарата, принятого за основу или введенного иным способом. Основа – это внутривенный способ введения, характеризующийся абсолютной биодоступностью. Для получения данных о количестве относительной биологической доступности в организме применяются показатели, характеризующие объем лекарства в кровеносной системе или же при его выведении из организма вместе с мочой после однократного или множественного применения. С целью получения высокого процента достоверности при анализировании применяется перекрестный метод изучения. Он позволяет максимально полно устранить разность результатов, полученных при физиологическом и патологическом состояниях организма.

    Факторы, влияющие на биодоступность :

    1. Доза лекарственного вещества.

    2. Путь введения лекарственного вещества (при внутривенном пути введения биодоступность 100%).

    3. Химическая структура (некоторые препараты разрушаются кислым содержимым желудка, поэтому перорально не назначаются, например, пенициллин, инсулин).

    4. Состояние ЖКТ (ускоренная перистальтика нарушает всасывание, следовательно, биодоступность снижается).

    14. Распределение лекарственных веществ в организме. Факторы, влияющие на распределение. Депонирование лекарственных веществ в организме. Биологические барьеры, их характеристика и основные механизмы транспорта лекарственных веществ через биологические мембраны.

    Распределение — это переход лекарства из системного кровотока в органы и ткани организма. Большинство ЛС распределяется неравномерно и лишь незначительная часть — относительно равномерно (некоторые ингаляционные средства для наркоза).

    На характер распределения влияют многие факторы, но наиболее важными являются :

    Растворимость ЛС в воде и липидах. Гидрофильные ЛС, имеющие малый молекулярный вес, легко проходят во внеклеточные области, но не могут проникнуть через мембраны клеток и (или) биологические барьеры. Липофильные ЛС легко проникают через биологические барьеры и обычно быстро распространяются по всему организму. Нерастворимые в жирах и воде ЛС могут проникать через мембраны клеток при наличии особой трансмембранной энергозависимой транспортной системы.

    Степень связывания ЛС с белками. Лекарственный препарат, попав в кровь, находится в ней в двух фракциях: свободной и связанной (ЛС, связанные с белком, не взаимодействуют с рецепторами, ферментами и не проникают через клеточные мембраны). Главным образом лекарства связываются с альбуминами. Уменьшение связанной фракции лекарства на 10–20% приведет к увеличению свободной фракции на 50–100%, что важно при использовании препаратов с малой широтой терапевтического диапазона.

    Особенности регионарного кровотока. Естественно, что после попадания ЛС в систему циркуляторного русла оно, в первую очередь, достигает наиболее хорошо кровоснабжаемых органов (сердце, легкие, печень, почки).

    Наличие биологических барьеров, которые встречаются на пути распространения ЛС : плазматические мембраны, стенка капилляров (гистогематический барьер), ГЭБ, плацентарный барьер.

    Гистогематический барьер разделяет плазму крови и интерстициальное пространство. По сравнению с другими барьерами капиллярная стенка наиболее легко проницаема для лекарств. ЛС проникают через щели, имеющиеся в местах контактов эндотелиальных клеток, выстилающих капилляры изнутри.

    Липидорастворимые вещества очень быстро диффундируют через мембрану, водорастворимые и ионы — через поры.

    Гематоэнцефалический барьер относится к числу сложнейших в анатомическом и функцональном отношениях. Его проницаемость для лекарств определяет степень их центрального действия и потому представляет особый интерес для фармакологии. Собственно ГЭБ — барьер между кровью и интерстициальной жидкостью мозга. ГЭБ представлен капиллярной стенкой, диффузным основным веществом и выстилающими ее снаружи клетками и отростками нейроглии — опорной ткани мозга.

    В целом ГЭБ ведет себя как типичная липидная мембрана, непроходимая для ионизированных молекул. При выраженном кислородном голодании, травматическом шоке, черепно-мозговой травме (ЧМТ), воспалении мозговых оболочек проницаемость ГЭБ для лекарств вообще и тех, что обычно трудно проникают в мозг, заметно возрастает.

    ДЕПОНИРОВАНИЕ ЛЕКАРСТВЕННЫХ СРЕДСТВ

    При распределении лекарственного вещества в организме часть вещества может задерживаться (депонироваться) в различных тканях. Из «депо» вещество высвобождается в кровь и оказывает фармакологическое действие. Липофильные вещества могут депо­нироваться в жировой ткани. Так, средство для внутривенного наркоза тиопентал-натрий вызывает наркоз, который продолжа­ется 15—20 мин. Кратковременность действия связана с тем, что 90% тиопентала-натрия депонируется в жировой ткани. После пре­кращения наркоза наступает посленаркозный сон, который про­должается 2—3 ч и связан с действием препарата, высвобождаемо­го из жирового депо.

    Антибиотики из группы тетрациклинов на длительное время депонируются в костной ткани. Тетрациклины не рекомендуют назначать детям до 8 лет, так как, депонируясь в костной ткани, они могут нарушать развитие скелета.

    Многие вещества депонируются в крови, связываясь с белками плазмы крови. В соединении с белками плазмы вещества не прояв­ляют фармакологической активности. Однако часть вещества выс­вобождается из связи с белками и оказывает фармакологическое действие. Вещества, которые более прочно связываются с белками, могут вытеснять вещества с меньшей прочностью связывания. Дей­ствие вытесненного вещества при этом усиливается, так как увели­чивается концентрация в плазме крови его свободной (активной) формы. Например, сульфаниламиды, салицилаты могут таким об­разом усиливать действие назначаемых одновременно непрямых антикоагулянтов. При этом свертываемость крови может чрезмер­но снижаться, что ведет к кровотечениям.