Взаимосвязи нервной, иммунной и эндокринной систем (Нейроиммуноэндокринология)

Взаимодействие иммунной, нервной и эндокринной систем

Согласно современным представлениям, нервная, эндокринная и иммунная системы находятся в организме в тесной взаимосвязи и фактически образуют единую систему управления организмом и его самозащиты от многообразных внешних воздействий.

  • Связь между иммунной системой и ЦНС осуществляется через кровь с помощью цитокинов.
  • ЦНС воздействует на иммунную систему с помощью нейропептидов (нейротензин, вазоактивный нейропептид кишечника, пептид-дельта сна, энкефалины, эндорфины (эндогенные опиоиды)).
  • ЦНС напрямую регулирует эндокринную систему, воздействуя на соответствующие железы, которые вырабатывают гормоны.
  • Эндокринная система воздействует на иммунную с помощью гормонов гипоталамо-гипофизарно-адреналовой оси.
  • Иммунокомпетентные клетки способны продуцировать ряд гормонов, прежде всего кортикотропин, эндорфин, энкефалин.
  • Нейроны способны напрямую продуцировать интерлейкины.
  • Есть сведения, что Т-лимфоциты участвуют в механизме памяти, но пока косвенные, основанные на опытах с животными.

Наиболее активными соединениями, способными связываться с клетками всех трех управляющих систем организма, являются нейропептиды, что, в частности, приводит к сильной опасности для организма опиоидной наркомании, так как при этом употребляются суррогаты естественных нейропептидов организма, то есть происходит нарушение всех трех регулирующих систем. Помимо наркотиков, глобально и сильно действуют стрессовые состояния.

Основные наблюдаемые при иммунной патологии явления, связанные с данным взаимодействием:

  1. Введение с лечебной целью цитокинов сопровождается депрессией ЦНС и мышечной слабостью.
  2. Нервная депрессия или стресс приводят к выбросу кортикостерона и кортизола, которые вместе с половыми гормонами подавляют иммунную систему. Кратковременная стрессовая реакция приводит к выбросу адреналина и норадреналина, которые подавляют активность лимфоцитов. Было экспериментально доказано, что на пике стресса в крови спортсменов или студентов вообще пропадают иммуноглобулины всех классов, то есть человек временно испытывает тяжелую форму иммунодефицита.

Синдром повышенной утомляемости [ править ]

Основные причины: длительное воздействие стресса, негативных факторов окружающей среды и низких доз радиации. У лиц, подвергающихся воздействию данных факторов, следует ожидать развитие иммунодефицита и принимать профилактические и иммунореабилитационные меры, а также меры по мониторингу. Клинические признаки: низкая трудоспособность, сонливость днем, утомляемость, склонность к ЛОР-заболеваниям и герпесу, периодически субфебрильная температура.

Лабораторные признаки: снижение уровня Т-клеток, активация В-звена и системы фагоцитоза. Иногда наоборот, происходит депрессия В-системы и активация Т-звена.

Выделено три стадии:

  1. Стадия компенсации: колебания иммунологических показателей в динамике, нет выраженных клинических признаков. Рекомендуемое лечение: санация очагов хронической инфекции, мониторинг, ЗОЖ.
  2. Стадия субкомпенсации: снижение функциональной активности одних популяций иммунных клеток и повышение активности других популяций. Учащение ОРВИ, хронические очаги инфекций в организме, повышенная утомляемость. Рекомендуемое лечение: то же, что на стадии компенсации + растительные адаптогены (женшень, элеутрококк и т.п.), витамины, интерфероногены.
  3. Стадия декомпенсации: депрессия Т и/или В-системы. В клинике выраженный вторичный иммуннодефицит, хронические и упорные инфекции, аутоиммунные и онкологические заболевания. Рекомендуемое лечение: лечение основного заболевания + интенсивное применение иммуномодуляторов.

Синдром хронической усталости [ править ]

Основные причины: дискутируются, хотя обычно называют те же, что и для предыдущего синдрома — загрязнение, радиация. Группами риска являются женщины, люди зрелого возраста, учителя, врачи и лица схожих профессий.

В настоящее время в качестве основного фактора рассматривается теория реактивации персистирующей вирусной инфекции, вызванной вирусами герпеса (Herpesviridae). У лиц с генетической предрасположенностью под влиянием внешних иммунодепрессивных факторов возникает иммунодефицит, на фоне которого активируются вирусы герпеса и другие инфекционные агенты.

Клинические признаки: основным признаком является хроническое утомление, которое не исчезает после отдыха. Сопровождается выраженным дисбалансом иммунной системы. Выделение синдрома в качестве самостоятельной нозологической формы в настоящий момент дискуссионно и поддерживается не всеми исследователями.

Помимо этого, имеется набор симптомов пограничного нервно-психического состояния: расстройства сна, изменчивость настроения, депрессия. На фоне этого наблюдаются и симптомы, свойственные инфекционным заболеваниям: субфебрильная температура, генерализованная лимфаденопатия, спленомегалия, миалгия, артралгия. Характерна тупая ноющая, практически постоянная боль в мышцах туловища и конечностей. Больные склонны к ОРВИ, хроническим ЛОР-заболеваниям, санация горла не облегчает состояния больного.

Именно сочетание как инфекционных, так и нервно-психических симптомов и позволяет диагностировать данное заболевание и дифференцировать его от астении либо хронической инфекции. При этом должно быть установлено отсутствие альтернативных причин, способных объяснить развитие хронической усталости в течение ближайших 6 месяцев (химиотерапия, опухоль, психическое заболевание, злоупотребление алкоголем, наркомания). Хроническое употребление алкоголя или наркотиков дает картину, весьма напоминающую СХУ, и тоже сопровождается иммунодефицитом. Кроме того, подобные состояния дают хронические инфекции, хроническая лучевая болезнь, церебральный арахноидит, отравления малыми дозами тяжелых металлов.

Лабораторные признаки: нормальный анализ крови, отсутствие нарушений почек, печени, щитовидной железы. Изменения иммунного статуса: снижение количества Т-лимфоцитов и их пролиферативной активности; нарушение иммунорегуляторного индекса; дисиммуноглобулинемия; снижение клеточного иммунитета.

Лечение: СХУ может прогрессировать вплоть до потери больным трудоспособности. Описаны случаи спонтанного исцеления, как правило, вследствие переезда в экологически более благоприятный регион. Для лечения применяют трициклические антидепрессанты, иммунокорректоры и адаптогены. В качестве иммунокорректоров при СХУ в РФ были предложены препараты кемантан и бромантан. Проводится вспомогательная терапия лекарственными травами: различные сборы и экстракты корня солодки, родиолы розовой (золотого корня) и эхинацеи пурпурной.

Взаимосвязи нервной, иммунной и эндокринной систем (Нейроиммуноэндокринология)

сделанные в начале и середине ХХ столетия, когда было показано, что нейроны гипоталамической области мозга способны, сохраняя присущую им организацию и импульсную активность, секретировать пептидные нейрогормоны [3,4]. Первоначально это относилось к способности крупноклеточных нейронов гипоталамуса синтезировать нонапептиды (окситоцин, вазопрессин и их гомологи), транспортировать их по аксонам в заднюю долю гипофиза и оттуда выделять в общий кровоток. Последнее роднило нервные клетки гипоталамуса с эндокринными, с секреторными клетками эндокринных желез, поэтому сам феномен был назван нейросекрецией [5].

Впоследствии выяснилось, что нейросекреция свойственна также тем популяциям мелкоклеточных нейронов гипоталамуса, которые регулируют гормональные функции передней доли гипофиза с помощью стимулирующих нейрогормонов (либеринов) и тормозящих нейрогормонов (статинов), транспортируемых в переднюю долю гипофиза гуморальным путём через кровоток портальной системы гипофиза [6].

Наконец, когда по аналогии с клетками гипофиза, на мембранах секреторных нейронов гипоталамуса были выявлены рецепторы к гормонам периферических эндокринных желез, стали понятны механизмы гипоталамической регуляции эндокринных функций. В их основе, как было установлено ранее для гипофиза, лежит принцип обратной связи, который определяет работу контролирующих механизмов [6].

Эти яркие открытия и вытекающие из них заключения стали краеугольным камнем, который лёг в основу новой для того времени области знаний — нейроэндокринологии. Родившись на стыке казалось бы различных дисциплин, нейробиологии и эндокринологии, нейроэндокринология дала новое измерение нашим знаниям о механизмах, лежащих в основе регуляции важнейших гомеостатических функций. Родившись на стыке различных дисциплин, нейроэндокринология оказалась важной ветвью нейронаук. Она раскрыла эндокринные функции мозга и подняла завесу над некоторыми его тайнами.

Между тем удивительные факты продолжали накапливаться, однако фокус новых открытий сместился в область иммунологии. Стало обнаруживаться большое сходство в организации и функционировании нервной и иммунной систем. Если выше при обсуждении общности нервной и эндокринной систем упоминалось о том, что нейроны, сохраняя специфическую организацию и функцию (генерирование и распространение нервных импульсов) могут одновременно

функционировать как эндокринные клетки, то оказалось, что аналогичное можно сказать и о клетках иммунной системы. Участвуя в регуляции гомеостаза с помощью специфических иммунных механизмов, эти клетки оказались способными экспрессировать рецепторы ко многим сигнальным молекулам, опосредующим воздействия нейроэндокринной системой [2,7], а также синтезировать некоторые эволюционно древние (консервативные) пептиды. В их ряду заслуживают упоминания нейропептиды, тахикинины, инсулиновые гормоны, проопиомеланокортин, дериватами которого являются АКТГ, β-эндорфин и меланоцит-стимулирующий гормон, и, наконец, гормон роста и пролактин, рецепторы которых относятся к большому семейству гемопоэтиновых — рецепторов к интерлейкинам, эритропоэтину, гранулоцитарно-макрофагальному колониеобразующему фактору [7-9].

При анализе сходства в организации нервной и иммунной систем привлекает внимание тот факт, что обе системы состоят из большого числа фенотипически различающихся клеток, организованных в сложные сети. В пределах такой сети клетки взаимосвязаны и функционируют по принципу обратной связи, когда пусковым сигналом служит адекватный раздражитель, а конечный ответ направлен на обеспечение полезного результата. Различие заключается в том, что в нервной системе клетки жестко фиксированы в пространстве, тогда как в иммунной они непрерывно перемещаются и лишь кратковременно взаимодействуют друг с другом.

Наиболее демонстративно взаимодействия нейроэндокринной и иммунной систем проявляются в реакции стресс. Известно, что эта защитная биологическая реакция развивается в ответ на действие широкого спектра агрессивных факторов внешней среды, таких как микробные, температурные, болевые агенты, факторы неподвижности, гравитации, психоэмоциональные воздействия и ряд других. При всех этих воздействиях активируется гипоталамо-гипофизарноадренокортикальная система (ГГАС).

Центральным звеном этой системы являются нейроэндокринные нейроны паравентрикулярного ядра (ПВЯ) гипоталамуса, синтезирующие кортикотропин-рилизинг гормон (КРГ). Их аксоны следуют к наружной зоне срединного возвышения, откуда КРГ поступает в портальный кровоток, достигая клеток аденогипофиза. КРГ через рецепторы 1 типа, активирующие цАМФ, стимулирует синтез проопиомеланокортина (ПОМК) и его деривата АКТГ. Последний вызывает выделение и синтез глюкокортикоидов, которые оказывают множество общеизвестных эффектов, в том числе ограничивают распространение воспаления. Важно подчеркнуть, что помимо КРГ, в мелкоклеточных нейронах гипоталамуса синтезируется еще один нейрогормон — вазопрессин (ВП), который через рецепторы 1б типа действует синергично с КРГ на АКТГ клетки гипофиза [10,11].

Ещё Ганс Селье, впервые описавший стресссиндром, отмечал, что иммунная система остаётся небезразличной к стрессу. Позднее были исследованы механизмы, с помощью которых иммунная система вовлекается в стрессовые реакции. Так, было показано, что в ответ на действие патогенных агентов макрофаги и лимфоциты выделяют широкий спектр регуляторных пептидов, объединенным общим названием цитокинов. Эти иммунные пептиды способен проникать в мозг через гемато-энцефалический барьер в тех его участках, где существуют «окна» для подобного рода веществ. К ним относятся система циркумвентрикулярных органов (срединное возвышение нейрогипофиза, субфорникальный орган, задняя крайняя область или area postrema), в которых существуют специфические механизмы транспорта для цитокинов. Пониженная барьерная активность в таких участках обусловлена особенностями организации, в первую очередь, наличием капилляров с фенестрированным эндотелием, облегчающим транспортировку цитокинов в нервную ткань из общего кровотока [12].

Попав в мозг, цитокины (и, в первую очередь, интерлейкин-1, ИЛ-1) стимулирует секрецию центрального нейрогормона стресса КРГ в нейросекреторных нейронах ПВЯ гипоталамуса. Причем, этот процесс зависит от присутствия простагландина Е2 и окиси азота. В свою очередь, КРГ стимулирует секрецию АКТГ в гипофизе, что приводит к стимуляции секреции глюкокортикоидных гормонов в коре надпочечников. Последние при повышенной секреции способны тормозить секрецию ИЛ-1 в макрофагах и тем самым угнетать иммунный ответ в случае его избыточности. Таким образом, здесь в чистом виде работают механизмы отрицательной обратной связи, в которых роль триггера выполняет иммунный пептид, а функцию исполнителя — нейрогормон гипоталамуса и гормоны эндокринной системы [1,12].

Изучение тонких механизмов взаимодействия нейроэндокринной и иммунной систем мы продолжили в исследованиях, которые проводили совместно с отделом физиологии эндокринной системы (G. Aguilera) одного из Национальных Институтов Здоровья США. В них мы исследовали влияние острого и хронического иммунного стресса на состояние ГГАС у крыс. Острый иммунный стресс воспроизводился введением эндотоксина липополисахарида (ЛПС) E. Coli в дозе 250мкг/100г внутрибрюшинно (в/б), а хронический — длительным введением этого антигена в нарастающих дозах от 25 до 250 мкг/100 г в течение 13-ти дней [13]. Об активности нейроэндокринной оси судили по динамике экспрессии соответствующей мРНК: в паравентрикулярном ядре — КРГ, в гипофизе — ПОМК, в коре надпочечников -11β-гидроксилазы с помощью метода гибридизации in situ. Дополнительно исследовали динамику экспрессии мРНК рецепторов к КРГ и глюкокортикоидам (кортикостерон). Помимо этого, радиоиммунным методом оценивали уровни АКТГ и кортикостерону в крови [13].

Читайте также  Резкая боль в левом плече

Полученные результаты оказались весьма любопытными. Так, было показано, что реакция ГГАС на острое воспаление, вызванное однократной инъекцией ЛПС, характеризуется активацией всех звеньев этой системы, включая синтез КРГ и ВП в мелкоклеточных ПВЯ гипоталамуса [13,14]. Напротив, при длительном введении ЛПС в нарастающих дозах, происходит парадоксальное подавление синтеза КРГ и нарастание синтеза ВП [13].

Подобная картина наблюдается и при ряде длительных воспалительных аутоиммунных заболеваний, таких как артрит, системная красная волчанка и аллергический энцефаломиелит и другие [15-17]. Подавление синтеза КРГ в этих случаях может быть связано как с длительным угнетающим действием глюкокортикоидов, уровни которых повышены, так и с дисбалансом нейротрансмиттеров в гипоталамусе. В любом случае, при подавлении синтеза центрального нейрогормона ГГАС, отмечается парадоксальная активация ее гипофизарно-надпочечникового звена [15-17].

В качестве модели аутоиммунной патологии, демонстрирующей вовлечённость и взаимодействие трёх регулирующих систем в механизмах развития заболевания, может служить такое аутоиммунное заболевание как артрит, экспериментально вызываемый с помощью введения адьюванта культуры убитых нагреванием Micobacteium butyricum [15]. Как упоминалось ранее, при этой патологии отмечается парадоксальное подавление синтеза КРГ, сочетающееся с повышенной продукцией АКТГ и глюкокортикоидов. В этих условиях ответ на психоэмоциональный стресс заметно снижен.

Однако при изучении реакции этой оси на иммунный стресс (однократное в/б введение ЛПС в дозе 200 мкг животным с артритом) нами в сотрудничестве с Национальными Институтами Здоровья США (G. Aguilera), Университетом Бристоля, Англия (S. Lightman, M. Harbuz) и Свободным Университетом Амстердама, Голландия (F. Tilders) была обнаружена выраженная активация всех ее звеньев ГГАС [18]. Естественно, нас заинтересовали причины такой необычной реакции, в силу чего были исследован синтез и секреция наиболее значимых провоспалительных цитокинов — ИЛ-1 и ИЛ-6. Оказалось, что введение ЛПС на фоне артрита приводит к резкому нарастанию в крови уровней цитокинов в крови и их экспрессия в головном мозге и периферических органах [18].

Обобщенная схема нейроиммуноэндокринных взаимодействий в регуляции гипоталамогипофизарно-адреналовой системы при остром и хроническом воспалении представлена на рисунке (приводится по [19]). В то время как при остром воспалении происходит активация центральных звеньев ГГАС, то при хроническом выявляется подавление синтеза КРГ и нарастание синтеза ВП в мелкоклеточных нейронах гипоталамуса, что совпадает с активацией синтеза АКТГ и глюкокортикоидов. При сочетании острого и хронического воспаления обнаруживается цитокин-зависимая потенциация активности всех звеньев ГГАС. Подобная корреляция иммунной и нейроэндокринной систем была обозначена нами как феномен гиперчувствительности ГГАС к иммунному стрессу при хроническом (аутоиммунном) воспалении.

Таким образом, ГГАС служит удобным «объектом» для изучения нейроиммуноэндокринных взаимодействий, а представленные сведения могут являться теоретическим базисом для изучения патофизиологии хронических воспалительных и аутоиммунных заболеваний, их диагностики и коррекции у человека.

Рис 1. Гиперреактивность гипоталамо-гипофизарно-адренокортикальной системы при хроническом воспалении (артрит) в ответ на острое воспаление, вызванное новым антигеном (ЛПС). Стимуляция синтеза основных нейрогормонов стрессорной оси — кортикотропин-рилизинг гормона (КРГ) и вазопрессина (ВП) «мелкоклеточного происхождения», а также синтеза проопиомеланокортина в передней доле гипофиза и выделения в кровь АКТГ происходит за счет повышенной продукции цитокинов в головном мозге и периферических органах и их содержания в общем кровотоке. ПВЯ — паравентрикулярное ядро гипоталамуса, ПДГ — передняя доля гипофиза, СВ — срединное возвышение нейрогипофиза (по И.Г.Акмаеву и В.В.Гриневичу, 2001 [19]).

Взаимосвязи нервной, иммунной и эндокринной систем (Нейроиммуноэндокринология)

На основании огромного количества фактического материала сегодня можно говорить о существовании единой регуляторной системы организма, объединяющей воедино нервную, иммунную и эндокринную системы.

По мнению некоторых ученых, иммунитет – это диссеминированный мобильный головной мозг.

Иммунная система, так же, как и центральная нервная система способна распознавать, запоминать и извлекать информацию из памяти. Носителями функций неврологической памяти являются нейроны анализаторной и лимбической систем мозга. Носителем функции иммунологической памяти являются определенные субпопуляции Т- и В-лимфоцитов, названные лимфоцитами памяти.

Иммунная система распознает внешние и внутренние антигенные сигналы разной природы, запоминает и передает информацию через, кровоток с помощью цитокинов в центральную нервную систему. Последняя, в свою очередь, обработав сигнал, оказывает регуляторное воздействие на иммунную систему с помощью нейропептидов и гормонов гипоталамо-гипофизарно-адреналовой оси.

В настоящее время вскрыты механизмы нейроиммунных взаимодействий на уровне рецеп-торного аппарата мембран клеток. На мембранах лимфоцитов обнаружены рецепторы к медиаторам – бета-эндорфину, метэнкефалину, белку Р, адренергическим веществам. Установлено, что иммунокомпетентные клетки способны продуцировать кортикотропин, эндорфин, энкефалин. Доказана возможность действия медиаторов иммунитета – интерлейкинов (ИЛ-1, ИЛ-2 и ИЛ-6), интерферонов, фактора некроза опухолей (ФНО)— на нейроглиальные клетки и нейроны. Под влиянием ИЛ-1 и ФНО усиливается секреция кортикотропина клетками гипофиза. В свою очередь, нейроны способны продуцировать ИЛ-2 и ИЛ-6.

Установлено, что мембраны нейронов и лимфоцитов снабжены одинаковыми рецепторами для кортикотропина, вазопрессина и бета-эндорфина. Постулируется, что таким образом с помощью общих клеточных рецепторов и растворимых гормонов, нейропептидов и цитокинов иммунная и центральная нервная система обмениваются информацией между собой.

Доказано, что при синдроме гиперпродукции цитокинов избыточная секреция макрофагами ИЛ-1, интерферона и ФНО является причиной депрессивных состояний, что сопровождается мышечной слабостью, длительным субфебрилитетом, панцитопенией, гепатоспле-номегалией. Это подтверждается следующими аргументами: 1) развитием депрессии у людей, которым с лечебной целью вводят цитокины; 2) изменением под влиянием ИЛ-1 гормонального статуса, приводящим к депрессии; 3) частой ассоциацией с депрессией болезней, сопровождающихся активацией макрофагов (ишемия, ревматоидный артрит и др.); 4) большей частотой депрессий у женщин вследствие того, что эстрогены усиливают секрецию ИЛ-1 макрофагами.

Развитие депрессии ведет к снижению функции ЕК-клеток на фоне резкого повышения продукции кортикостерона и кортизола. В условиях длительного стресса под влиянием гли-кокортикоидов и половых гормонов подавляется функция иммунной системы. Адреналин и норадреналин подавляют миграцию лейкоцитов и активность лимфоцитов. Кроме того, лимфоциты на своей мембране имеют также рецепторы к таким гормонам, как инсулин, тироксин и соматотропин. Последний также способен модулировать функцию Т- и В-лимфоцитов.

Известно, что на мембране Т-лимфоцитов и нейронов имеется общий антиген Тх-1, что еще раз свидетельствует в пользу общности этих систем. Были проведены интересные опыты. Цыплят условно-рефлекторно обучали не склевывать гранулы красного цвета. После этого обученным птицам водили моноклональные антитела к Тх-1-антигену Т-лимфоцитов. В результате у цыплят развивалась амнезия, строго зависимая от дозы антител. Птицы начинали склевывать гранулы всех цветов. Авторы сделали вывод о том, что Т-лимфоциты принимают участие в процессе формирования памяти.

Представление о неразрывном единстве нервной, эндокринной и иммунной систем, а также неврологической и иммунологической памяти, укрепили данные о широком распространении нейропептидов вне мозга. В настоящее время описано уже более 20 нейропептидов, выявленных в крови и лимфе. Среди них нейротензин, вазоактивный нейропептид кишечника (субстанция Р), пептид-дельта сна, энкефалины, эндорфины (эндогенные апиоиды) и др. Считают, что именно нейропептидам принадлежит важная роль в интегративной деятельности нервной, эндокринной и иммунной систем за счет наличия на их клетках одинаковых рецепторов, через которые и осуществляется взаимосвязь.

Современная жизнь характеризуется стрессами и глобальным загрязнением окружающей среды, которые, воздействуя на психонейро-иммуноэндокринную систему, приводят к развитию вторичного иммунодефицита и нейропсихических нарушений.

Из числа многочисленных определений понятия “стресс” приведем формулировку Г.Н.Кассиля ( 1 9 8 3 ) : стресс – “общая адаптивная реакция организма, ра звивающаяся в ответ на угрозу нарушения гомеостаза”.

В соответствии с причинами существует следующая классификация видов стресса:

1) эмоциональный; 2) социальный; 3) производственный; 4) академический; 5) спортивный; 6) гипокинетический; 7) репродуктивный; 8) вакцинальный; 9) лекарственный; 10) инфекционный; 11) космический; 12) пищевой; 13) транспортировочный; 14) гипок-сический; 15) болевой; 16) температурный; 17) световой; 18) шумовой; 19) обонятельный; 20) стресс патологических процессов; 21) экологический. Несомненно, этот список может быть продолжен.

Большой вклад в понимание механизмов развития вторичного иммунодефицита под влиянием экстремальных эмоциональных и физических факторов внесло открытие Б. Б. Пер-шина и соавт. Ими был установлен факт исчезновения в периферической крови иммуноглобулинов всех классов у спортсменов на пике спортивной формы перед ответственными состязаниями. В последующем эти данные были подтверждены на студентах в период сдачи экзаменов.

Взаимосвязи нервной, иммунной и эндокринной систем (Нейроиммуноэндокринология)

В настоящее время развитие такой науки как иммунология позволяет получить большое количество обширных данных о иммунитете и, в особенности, взаимосвязи между иммунной и иными системами человеческого организма [5-7]. В настоящее время иммунология, как наука, является одной из ведущих, поскольку среди основных причин заболевания организма человека существенное место занимает подавление иммунитета, особенно при развитии заболеваний.

Цель работы – рассмотреть взаимосвязь между нервной, эндокринной и иммунной системами.

В организме человека существуют три тесно взаимосвязанных регулирующих системы: нервная, эндокринная и иммунная. Согласно современным представлениям, нервная, эндокринная и иммунная системы находятся в организме в тесной взаимосвязи и фактически образуют единую систему управления организмом и его самозащиты от многообразных внешних воздействий.

Объединение систем в единую регулирующую структуру базируется на следующих положениях.

  • Связь между иммунной системой и ЦНС, эндокринной осуществляется через кровь с помощью цитокинов, тимопоэтина, лимфокинов.
  • ЦНС воздействует на иммунную систему с помощью нейропептидов (нейротензин, вазоактивный нейропептид кишечника, пептид-дельта сна, энкефалины, эндорфины (эндогенные опиоиды)).
  • ЦНС напрямую регулирует эндокринную систему, воздействуя на соответствующие железы, которые вырабатывают гормоны [2, 4].
  • Эндокринная система воздействует на иммунную с помощью гормонов гипоталамо-гипофизарно-адреналовой оси [1, 8, 9].
  • Иммунокомпетентные клетки способны продуцировать ряд гормонов, прежде всего кортикотропин, эндорфин, энкефалин.
  • Нейроны способны напрямую продуцировать интерлейкины.

Самой первой из этих систем появилась эндокринная или гуморальная система. Гуморальная регуляция – один из эволюционно ранних механизмов контроля процессов жизнедеятельности в организме, осуществляемый через жидкие среды организма (кровь, лимфу, тканевую жидкость, слюну) с помощью гормонов, выделяемых клетками, органами, тканями. У высокоразвитых животных, включая человека, гуморальная система подчинена нервной регуляции и составляет, совместно с ней, единую нейрогуморальную сеть. Продукты обмена веществ действуют не только непосредственно на эффекторные органы, но и на окончания чувствительных нервов (хеморецепторы) и нервные центры, вызывая гуморальным или рефлекторным путём те или иные реакции. Гуморальная передача нервных импульсов химическими веществами, т. е. медиаторами, осуществляется в центральной и периферической нервной системе. Наряду с гормонами важную роль в гуморальной регуляции играют продукты промежуточного обмена. Одной из гуморальных систем, которая воздействует на иммунитет – это гипоталамо-гипофизарно-адреналовый комплекс, который активируется при стрессе. Воздействие, которое воспринимается корой головного мозга и передается в гипоталамус, где вырабатывается кортикотропин-высвобождающий гормон (CRH), стимулирующий гипофизарные рецепторы. Итогом этого процесса является секреция кортикотропина в плазму, стимуляция кортикотропиновых рецепторов в адреналовой области надпочечников и выброс кортизола в кровь. Воздействие на гипоталамические кортизоловые рецепторы по типу обратной связи приводит к снижению выработки CRH с целью поддержания гомеостаза. Иммунная система также вовлечена в развитие стресса, отвечая на действие стресс-реализующих гормонов. Иммунокомпетентные клетки (Т- и В-лимфоциты, макрофаги, нейтрофилы и эозинофилы, клетки тимуса) имеют рецепторы ко многим гормонам, в том числе к адреналину и кортизолу [3].

Читайте также  Урологические осложнения инсульта

Помимо гипоталамо-гипофизарно-адреналовый комплекса, существует взаимосвязь гуморальной системы с иммунной и нервной системой через тимус. Вилочковая железа (тимус) производит большое количество гормонов, которые можно подразделить на: цитокины или лимфокины и тимические (или тимусные) гормоны. Тимопоэтины, регулирующие процессы роста, созревания и дифференцировки Т-клеток и функциональную активность зрелых клеток иммунной системы. К цитокинам, секретируемым иммунокомпетентными клетками, относятся: гамма-интерферон, интерлейкины (1-7 и 9-12), фактор некроза опухолей, гранулоцитарный колониестимулирующий фактор, гранулоцитомакрофагальный колониестимулирующий фактор, макрофагальный колониестимулирующий фактор, лейкемический ингибиторный фактор, онкостатин М, фактор стволовых клеток и другие. Секреция гормонов тимуса, регулируется с помощью глюкокортикоидов, секретируемые корой надпочечников, а секреция глюкокортикоидов, регулируется нервной системой (переднея доля гипофиза по принципу обратной связи). К примеру, при вирусном заболевание происходит выработка тимусом тимопоэтина, а это приводит к росту, созреванию и дифференцировке Т-лимфоцитов, а в дальнейшем активации адаптивного иммунитета [3].

В более позднем периоде эволюционного развития появилась нервная система. Нервная система (НС) – это целостная морфологическая и функциональная совокупность различных взаимосвязанных, нервных структур, которая совместно с эндокринной системой обеспечивает взаимосвязанную регуляцию деятельности всех систем организма и реакцию на изменение условий внутренней и внешней среды. Нервная система действует как интегративная система, связывая в одно целое чувствительность, двигательную активность и работу других регуляторных систем (эндокринной и иммунной).

НС состоит из: нервных клеток (нейронов) и глиальных клеток (нейроглии). Нейроны – это основные структурные и функциональные элементы как в центральной, так и периферической нервной системе. Они являются возбудимыми клетки, то есть, способны генерировать и передавать электрические импульсы (потенциалы действия). Нейроны имеют различную форму и размеры, формируют отростки двух типов: аксоны и дендриты.

Глиальные клетки более многочисленны, чем нейроны и составляют по крайней мере половину объёма ЦНС, но в отличие от нейронов они не могут генерировать потенциалов действия. Нейроглиальные клетки различны по строению и происхождению, они выполняют вспомогательные функции в нервной системе, обеспечивая опорную, трофическую, секреторную, разграничительную и защитную функции. Было отмечено, что нервная и иммунная системы имеют некоторые общие черты в принципах функционирования, а именно:

  1. Только эти системы обладают способностью к «узнаванию объектов» (в случае иммунной системы это распознавание «своего и чужого» посредством специальных рецепторов, в случае нервной — распознавание внешних и внутренних стимулов, преобразующихся в нервный сигнал также благодаря специальным рецепторам);
  2. Обе эти системы обладают памятью (иммунологическая память, которая позволяет В-клеткам памяти запоминать антигены, с которыми встретился организм, и нейрональная память, которая также способна хранить следы воздействия внешних стимулов, благодаря свойству пластичности нервных клеток);
  3. Эти системы способны выделять химические сигналы, которые регулируют поведение отдельных клеток (цитокины и медиаторы соответственно), а также взаимодействуют на уровне непосредственных контактов (взаимодействие рецептор–лиганд в случае иммунных клеток и щелевые контакты в случае нервных клеток).

Помимо схожести с иммунной системой, нервная схожа с гуморальной системой, за счет помощи медиаторов, и гормонов, секреция которых, чаще всего реализуется за счет подачи импульсов НС. К примеру, увеличение выработки слюны в ротовой полости – это следствие ответа на внешний раздражитель нервной системой [3].

Самая поздняя из систем, в эволюционном ряде – это иммунная система. Иммунная система – это система, объединяющая органы и ткани, которые защищают организм от заболеваний, идентифицируя и уничтожая опухолевые клетки и патогены. Иммунная система распознаёт множество разнообразных возбудителей и отличает их от биомолекул собственных клеток. Распознавание возбудителей усложняется их адаптацией и эволюционным развитием новых методов успешного инфицирования организма-хозяина.

Адаптивный иммунитет – это способность организма обезвреживать чужеродные и потенциально опасные микроорганизмы (или молекулы токсинов), которые уже попадали в организм ранее. Представляет собой результат работы системы высокоспециализированных клеток (лимфоцитов), расположенных по всему организму. Считается, что система приобретённого иммунитета возникла у позвоночных животных. Он представлен T-лимфоцитами и антителами, продуцируемыми B-лимфоцитами.

Существует схема с помощью, которой можно рассмотреть единство нервной, эндокринной и иммунной систем – это схема реакции на патогенное воздействие.

Первая активируется нервная система. Она запускается за счет рецепторов боли, которые посылают импульс по сигнальному ганглию проходит до задних рогов спинного мозга, а дальше до таламуса, а там активируется потенциал действия и запуск иммунной и гуморальной систем. Иммунная система в первые секунды патогенеза болезни не особо активно себя проявляет, но постепенно увеличивает свой потенциал, так как происходит активация адаптивного или приобретенного и врожденного иммунитета. Если патогеном является микроорганизмом или это клетки, которые изменены, т.е. имеют на поверхности мембраны фосфатидилсерин, то тогда работают клетки врожденного иммунитета, а если это вирусы или аутоиммунные заболевания, то тут вступают клетки адаптивного иммунитета. В конце активируется гуморальная система, её участие это частичная коррекция или полное устранение дефектов заболевания.

Гуморальная, иммунная и нервная системы – это три взаимосвязанные системы, поскольку они взаимодополняют друг друга. Существуют примеры того как происходит данное взаимодействие [5-7]. Основные наблюдаемые при иммунной патологии явления, связанные с данным взаимодействием:

  1. Введение с лечебной целью цитокинов сопровождается депрессией ЦНС и мышечной слабостью.
  2. Нервная депрессия или стресс приводят к выбросу кортикостерона и кортизола, которые вместе с половыми гормонами подавляют иммунную систему.
  3. Кратковременная стрессовая реакция приводит к выбросу адреналина и норадреналина, которые подавляют активность лимфоцитов. Было экспериментально доказано, что на пике стресса в крови спортсменов или студентов вообще пропадают иммуноглобулины всех классов, то есть человек временно испытывает тяжелую форму иммунодефицита.

На основании огромного количества фактического материала сегодня можно говорить о существовании единой регуляторной системы организма, объединяющей воедино нервную, иммунную и эндокринную системы.

Взаимосвязи нервной, иммунной и эндокринной систем (Нейроиммуноэндокринология)

При анализе сходства в организации нервной и ИС привлекает внимание факт, что обе системы состоят из большого числа фенотипически различающихся клеток, организованных в сложные сети. В пределах такой сети клетки взаимосвязаны и функционируют по принципу обратной связи, когда пусковым сигналом служит адекватный раздражитель, а конечный ответ направлен на обеспечение полезного результата. Участвуя в регуляции гомеостаза с помощью специфических иммунных механизмов, эти клетки оказались способными экспрессировать рецепторы ко многим сигнальным молекулам, опосредующим воздействия нейроэндокринной системы, а также синтезировать некоторые эволюционно древние пептиды (нейропептиды, тахикины, цитокины, факторы роста и др.). Приходится констатировать в клетках ИС отдельные признаки организации и функционирования клеток нервной и эндокринной систем.

Существует множество примеров тесных взаимодействий нейроэндокринной и ИС в разные периоды жизни и при различных физиологических состояниях, а также при патологии. Известно, что с возрастом ослабляются реакции иммунной защиты и параллельно снижается активность гормона роста. Сходным образом при физиологических состояниях, сопровождающихся угнетением ИС, например при беременности, снижается секреция пролактина, окситоцина и повышается секреция половых стероидов — эстрогенов, прогестерона. После родов, когда уменьшается секреция стероидных гормонов и вновь активизируется ИС, повышается секреция пролактина и окситоцина, Снижение функции иммунной защиты с возрастом идет параллельно с повышением секреции АКТГ.

Весьма демонстративно взаимодействия нейроэндокринной и ИС проявляются в стресс-реакции. Показано, что в ответ на действие патогенных агентов из макрофагов выделяется интерлейкин-1 (ИЛ-1). Попав в мозг, ИЛ-1 стимулирует секрецию кортиколиберина (КЛ) в нейронных популяциях гипоталамуса. В свою очередь КЛ стимулирует секрецию АКТГ в гипофизе, что приводит к стимуляции секреции глюкокортикоидных гормонов в коре надпочечников. Последние при повышенной секреции способны тормозить секрецию ИЛ-1 в макрофагах и тем самым угнетать иммунный ответ в случае его избыточности. Так работают механизмы отрицательной обратной связи, в которых роль триггера выполняет иммунный пептид, а функции исполнителя — нейропептид и гормоны эндокринной системы.

Ярким примером нейроиммуноэндокринных взаимодействий является развитие сахарного диабета (СД). Нередко у лиц среднего и пожилого возраста после перенесенного психоэмоцинального стресса наблюдаются нарушения углеводного гомеостаза. Один из ранних признаков этого — повышение уровня сахара в крови. Этот тревожный сигнал может быть стойким, который в дальнейшем трансформируется в характерный синдром: нарушенная толерантность к глюкозе, гипергликемия, глюкозурия, высокий уровень гликированного гемоглобина, наличие в крови специфических антител. Вероятный патогенетический механизм СД представляется следующим: стрессовые реакции сопровождаются повышением бактериальных белков теплового шока, которые являются чужеродными для организма. Когда они связываются с антигенами главного комплекса гистосовместимости I класса (HLA- I) на поверхности макрофагов и инсулинсекретирующих β-клеток, они распознаются рецепторами Т-лимфоцитов и инициируют аутоиммунный ответ, направленный на уничтожение β-клеток панкреатических островков.

В условиях эмоционального стресса, формирующего патологический очаг возбуждения, создаются условия для генерации нейропатологических синдромов, совокупность которых охватывается понятием дисрегуляторной патологии. В последнее время получила распространение теория молекулярной мимикрии, наиболее удовлетворительно объясняющая механизмы аутоиммунной патологии. Согласно этой теории молекулы патогенного агента, попавшего в организм, могут проявлять химическое или конформационное сходство с собственными молекулами, встроенными в мембраны эндокринных клеток. В этом случае хелперные Т-лимфоциты, принимая их за чужеродный антиген, инициируют аутоиммунную агрессию против собственных клеток, используя весь арсенал атакующих средств. Так как отличительной особенностью β-клеток панкреатических островков является наличие на их поверхности HLA-I и HLA-II, они становятся мишенью, как для хелперных, так и для цитотоксических Т-лимфоцитов. Когда рецепторы Т-хелперов узнают чужеродный антиген, ассоциированный на презентирующей клетке с HLA-II, происходит активация Т-лимфоцитов, которая складывается из следующих процессов. Активируются тирозинкиназы, стимулируя активность фосфолипазы С, которая катализирует гидролиз мембранных фосфолипидов с образованием диацилглицерола и инозитол-3-фосфата. Под действием последнего происходит откачивание Са 2+ из его клеточных депо, который, взаимодействуя с кальмодулином, активирует фермент протеинкиназу С, в чем участвует также и диацилглицерол. Протеинкиназа С активирует транскрипционный фактор гена, который кодирует синтез важного медиатора ИС — ИЛ-2. Этот цитокин выполняет функцию фактора роста в ИС. Он вызывает пролиферацию хелперных Т-лимфоцитов, в результате чего аутореактивный иммунный ответ усиливается. Кроме того, действие ИЛ-2 приводит к пролиферации цитотоксических Т-лимфоцитов, которые способны узнавать чужеродный антиген, ассоциированный с HLA-I на поверхности β-клеток. В результате активации цитотоксические Т-лимфоциты выделяют перфорин, который создает пористую структуру в мембране β-клеток. Через эти поры в клетки устремляются ионы кальция и натрия, что приводит к обводнению цитоплазмы β-клеток и набуханию митохондрий. Повреждение митохондрий нарушает клеточную энергетику и выводит из строя энергозависимые насосы, откачивающие из клетки избыток Са 2+ и Na + . Избыток кальция вызывает токсический эффект, а натрий нарушает клеточную осмолярность, что приводит к гибели клеток. В то же время ИЛ-2 вызывает пролиферацию В-лимфоцитов и усиливает в них образование антител. Попадая в кровь, антитела опсонизируют макрофаги, стимулируя выделение из них свободнорадикальных соединений с высокой реакционной способностью и ИЛ-1. Эти факторы усиливают деструкцию β-клеток. Антитела активируют циркулирующую в крови систему комплимента (протеолитические ферменты), которая усиливает деструкцию β-клеток. Так разворачивается массовая гибель β-клеток. Когда уровень гибнущих клеток достигает 80-90%, оставшийся пул секретирующих клеток уже не способен поддерживать жизненно важную гомеостатическую функцию. Для её компенсации требуются инъекции экзогенного инсулина. Развивается инсулинозависимый СД.

Читайте также  Как правильно сделать обертывание для похудения в домашних условиях?

Нередко объектом аутоиммунной агрессии становятся нервные клетки. Так, при заболевании несахарным диабетом аутоиммунной агрессии подвергаются гипоталамические нейроны, секретирующие вазопрессин, который обладает антидиуретической активностью. При рассеянном склерозе чужеродным антигеном становится основной белок миелина, покрывающего в виде пограничной мембраны нервные волокна. Миелин выполняет функцию изолятора, предотвращающего утечку ионных токов. При повреждении этого изолятора нервные импульсы затухают и не могут достичь своей мишени — мышечных клеток. В результате больные умирают от паралича дыхательной мускулатуры. Такой же исход наблюдается при тяжелой миастении. В данном случае чужеродным антигеном становятся белковые рецепторы к нейромедиатору ацетилхолину, выделяемому в области нервномышечных синапсов.

Таким образом, в реализацию ответа со стороны каждой из регулирующих систем содружественно вовлекаются две другие, что облегчается сходством в их организации. Важной составляющей нейроэндокринной активности являются механизмы иммунного ответа, а сам по себе иммунный ответ требует согласованного участия нервной и эндокринной систем. С этой точки зрения легко понять и корни аутоиммунной патологии при заболеваниях, поражающих нервную и эндокринную системы. Вышесказанное легло в основу новой области медицины — нейроиммуноэндокринологии, которая представляется весьма перспективной в исследовании физиологических основ жизнедеятельности и патогенетических механизмов различных форм дисрегуляторной патологии.

Нейропсихиатрические расстройства при заболеваниях эндокринной системы

Опубликовано ср, 29/05/2019 — 13:39

Нервная, иммунная и эндокринная системы тесно взаимосвязаны между собой и все они обеспечивают сохранение гомеостаза, поэтому психические расстройства всегда сопровождаются изменениями в этих системах организма, а коррекция этих изменений приводит к выздоровлению больного с симптомами нейропсихиатрических расстройств. С моей точки зрения, лечение психических расстройств не обязательно должно заключаться в назначении психотропных препаратов, а в первую очередь, в коррекции нарушений со стороны неврной, иммунной и эндокринной систем организма, теми препаратами, которые врачи этих специальностей лечат своих больных. Полагаю, что знание эндокринологии, неврологии и иммунологии обязательно для врачей психиатров, причем не только симптоматики заболеваний этих систем, чтения результатов лабораторных и инструментальных методов исследований, но и медикаментозных и немедикаментозных методов лечения той патологии, с которой встречаются врачи эндокринологи, иммунологи и неврологи. Создаваемая нами Российская Нейропсихиатрическая Ассоциация и ставит одной из своих целей сближение междисциплинарных исследований, на основе современных достижений билогии и психологии.

Однако, вернемся к теме данной заметки. Известно, что эндокринные нарушения могут приводить к различным неврологическим расстройствам, таким как головная боль, миопатия, хроническая и острая дисциркуляторная энцефалопатия, включая даже кому. Важно своевременно распознаватьть неврологические и психопатологические симптомы, вызванные эндокринными расстройствами, при лечении последних и наоборот, нарушения со стороны эндокринной системы при диагностике и лечении нейропсихиатрических расстройств. Ранняя диагностика и лечение гормонального дисбаланса может быстро ослабить выраженность неврологических и психопатологических симптомов.

Гипоталамо-гипофизарная система

Нейроэндокринная система, состоящая из нервной системы и эндокринной системы, как известно, хороший пример совместной работы этих систем организма. Кроме того, это ключ к пониманию механизмов их взаимодействия и первая подсказка для лечащего врача. Акцент в работе эндокринологов нередко ставится на роль гипофиза в регуляции активности различных эндокринных желез. Однако, внимание стоит уделить особенностям контроля гипоталамуса за секрецией гормонов гипофиза. Следует помнить, что здесь имеют место множественные взаимные взаимодействия между нервной системой и эндокринной системой для поддержания гомеостаза и правильной реакции на стимулы окружающей среды посредством регулируемой секреции гормонов, нейротрансмиттеров или нейромодуляторов. Нейроны выпускают свои нейротрансмиттеры и нейромодуляторы в синапсах, в то время, как нейросекреторные клетки выделяют вещества непосредственно в кровоток, которые выступают в качестве гормонов. Нейросекреторные клетки включают в себя нейрогипофизарные и гипофизиотропные клетки.

Гипоталамус

Таким образом следует признать, что гипоталамус является основной структурой мозга, участвующей в поддержании гомеостаза. В гипоталамусе имеется много определенных ядер, которые получают сенсорные входные данные от внешней и внутренней среды, такие как свет, ноцицепция, температура, кровяное давление, осмоляльность и уровень глюкозы в крови. Многие гормоны также демонстрируют, как отрицательную, так и положительную обратную связь непосредственно влияя на гипоталамус. Можно сказать, что гипоталамус обеспечивает скоординированные ответы, влияющие на гипофиз, кору головного мозга, ствол головного и спинного мозга, а также симпатические и парасимпатические преганглионарные нейроны для поддержания гомеостаза посредством скоординированных эндокринных, поведенческих и вегетативных реакций.

Неврологическая симптоматика эндокринных заболеваний

Различные неврологические признаки и симптомы, возникающие в результате эндокринных расстройств, включают головную боль, измененное состояние сознания, аномальную мышечную силу, мышечный тонус, ригидность мышц и судороги, двигательные расстройства и психомоторную заторможенность.

Головная боль может быть неспецифическим симптомом, но она может быть сравнительно часто вызвана патологическими состояниями, включая внутричерепную гипертензию и, в частности, ее идиопатическую форму. Идиопатическая внутричерепная гипертензия (синдром псевдоопухоли головного мозга, PTCS) — это наличие повышенного внутричерепного давления в условиях нормального состояния паренхимы головного мозга и спинномозговой жидкости. Головная боль, рвота, изменения зрения, паралич нерва и папилледема обычно представлены в клинической картине идиопатической внутричерепной гипертензии. У маленьких детей при этом могут быть обнаружены только раздражительность, сонливость или апатия. Если не лечить это заболевание, оно может прогрессировать до атрофии зрительного нерва, и зрение будет быстро потеряно. Точный механизм возникновения идиопатической внутричерепной гипертензии неизвестен, не ясен, но он может возникать в связи с различными состояниями, включая эндокринные нарушения, такие как недостаточность надпочечников, диабетический кетоацидоз, гиперадренализм, гипертиреоз и гипопаратиреоз. У детей идиопатическая внутричерепная гипертензия представляет собой нейроэндокринное расстройство, иллюстрирующее многие метаболические и гормональные нарушения в пределах гипоталамо-гипофизарно-надпочечниковой оси, и захватывает такие аспекты эндокринной системы, как ренин-ангиотензин-альдостерон, гормон роста (GH) и инсулиноподобный фактор роста-1 (IGF-1), гипоталамо-гипофизарно-щитовидная ось, гипоталамо-гипофизарно-гонадная ось, задний гипофиз и антидиуретический гормон.

Психопатологическая симптоматика при эндокринных заболеваниях

Измененный психический статус — обычное явление в отделении неотложной помощи, которое может быть вызвано эндокринными заболеваниями с быстрой декомпенсацией состояния эндокринной системы. Внимание, и уровень сознание могут поддерживаться взаимодействием между ретикулярным ядром ствола мозга, таламусом и корой головного мозга. Нарушение сознания означает значительное изменение в бодрствовании и осознании себя и окружающей среды. Причины комы у детей могут быть связаны с инфекционным или воспалительным факторами, структурными поражениями мозга, метаболическими и токсическими процессами, а также грубыми нарушениями питания. Метаболическая или эндокринная энцефалопатия должна рассматриваться с точки зрения дифференциального диагноза у тех пациентов, у которых отсутствуют очаговые неврологические признаки и симптомы раздражения менингеальных клеток (оболочки мозга).

Диабетическая кома является одним из значимых диагнозов, который следует исключить в отделении неотложной помощи при ведении пациентов с измененной психикой, в частности, помрачением сознания. Диабетический кетоацидоз и гипергликемический гиперосмолярный синдром являются наиболее опасными состояниями при гипергликемии. Напротив, гипогликемия, отек головного мозга после лечения диабетического кетоацидоза также может быть представлена измененной психикой, начиная от общей слабости, летаргии, раздражительности до комы.

Гипоплазия надпочечников

Гипонатриемический гиповолемический криз надпочечников у пациентов с врожденной гиперплазией надпочечников (CAH), дефицитом семейного глюкокортикоида или дефицитом адренокортикотропного гормона (ACTH) может привести к изменению психики больного.

Гипопаратиреоз

Гипокальциемическая тетания или судороги с гипопаратиреоидизмом или без него могут также привести к нарушению сознания. Следует помнить, что апатия, бред или психоз могут возникать при концентрациях кальция в сыворотке, превышающих 11 мг/дл. Проверка уровня глюкозы в крови, кальция и электролитов должна быть проведена на первом этапе оценки измененной психики у пациента с нейропсихиатрическими расстройствами.

Заболевания щитовидной железы

Тяжелый гипертиреоз и гипотиреоз могут быть редкой причиной изменения психики, щитовидной железы и комы гипотиреоза, соответственно. У пациентов с данной патологией могут возникнуть поведенческие и когнитивные изменения, миоклонус, судороги, психоз, непроизвольные движения и даже кома. При гипотиреоидной коме в анамнезе пациента могут быть перенесенные ранее заболевания щитовидной железы и прогрессирующая летаргия с гипотермией, брадикардией, запорами, одышкой, желтой и сухой кожей и редкими припадками. При повышенной активности щитовидной железе могут проявляться лихорадка, тахиаритмия, тахипноэ, одышка, застойная сердечная недостаточность, диарея, тошнота, рвота и гипергидроз. Кроме того, могут развиться тремор, беспокойство, спутанность сознания, бред и изменения психики до коматозного состояния. В качестве провоцирующих факторов могут рассматриваться серьезные хирургические вмешательства, травмы, системные инфекции, тяжелый эмоциональный стресс или диабетический кетоацидоз, поэтому функцию щитовидной железы следует оценивать при лечении диабетического кетоацидоза. Энцефалопатия Хашимото может развиться у пациентов с аутоиммунными заболеваниями щитовидной железы и характеризуется стероид-чувствительной энцефалопатией с присутствием антитиреоидных антител .

Изменения со стороны мышечной системы

Мышечная слабость, боль и ригидность мышц являются общими симптомами эндокринных расстройств. Системные характерные симптомы специфических эндокринных расстройств обычно предшествуют появлению слабости, но мышечная слабость может быть и начальным симптомом эндокринного заболевания. Эндокринная миопатия должна рассматриваться как одна из этиологии мышечной слабости, потому что специфическое лечение здесь вполне доступно для эффективного результата.

Дисфункция щитовидной железы (гипер- или гипотиреоз), нарушения паращитовидной железы (гипер- или гипопаратиреоз) и заболевания надпочечников (болезнь Кушинга, болезнь Аддисона или гиперальдостеронизм) могут вызывать эндокринные миопатии. Клинические особенности большинства эндокринных миопатий в детском возрасте обычно характеризуются наличием проксимальных мышечных поражений, таких как мышцы таза или плечевого пояса, относительно умеренными морфологическими мышечными нарушениями даже при наличии серьезных клинических симптомов и благоприятным исходом лечения. Слабость обычно намного более выражена в ногах, чем в руках, и ненормальная походка может быть начальным симптомом слабости проксимального или дистального отдела ног. У пожилого мужчины был зарегистрирован случай субклинического гипотиреоза с аномалией походки.

Электролитный дисбаланс, такой как гипер- или гипонатриемия, гипер- или гипокалиемия, гипофосфатемия, гипокальциемия и гипомагниемия, могут быть причиной миопатий, сопровождающихся эндокринными нарушениями. Глубокие сухожильные рефлексы могут быть нормальными или ослабленными, но обычно они отсутствуют. Сывороточная креатинкиназа обычно нормальная. Однако, она может быть и повышена, что не коррелирует с выраженностью мышечной слабости.

Спазмы, непроизвольные болезненные сокращения мышц или части мышц, могут возникать у нормальных детей, связанных с интенсивными физическими упражнениями, но они могут быть вызваны эндокринными нарушениями, включая надпочечниковую недостаточность, гипотиреоз или гипертиреоз. Скованность мышц и судороги возникают при миотонии, дистонии и других двигательных расстройствах, но могут присутствовать при гипотиреозе или тиреотоксикозе, когда активность двигательной единицы требует непрерывности.